Matching Items (3)
Filtering by

Clear all filters

157023-Thumbnail Image.png
Description
Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological

Design is a fundamental human activity through which we attempt to navigate and manipulate the world around us for our survival, pleasure, and benefit. As human society has evolved, so too has the complexity and impact of our design activities on the environment. Now clearly intertwined as a complex social-ecological system at the global scale, we struggle in our ability to understand, design, implement, and manage solutions to complex global issues such as climate change, water scarcity, food security, and natural disasters. Some have asserted that this is because complex adaptive systems, like these, are moving targets that are only partially designed and partially emergent and self-organizing. Furthermore, these types of systems are difficult to understand and control due to the inherent dynamics of "wicked problems", such as: uncertainty, social dilemmas, inequities, and trade-offs involving multiple feedback loops that sometimes cause both the problems and their potential solutions to shift and evolve together. These problems do not, however, negate our collective need to effectively design, produce, and implement strategies that allow us to appropriate, distribute, manage and sustain the resources on which we depend. Design, however, is not well understood in the context of complex adaptive systems involving common-pool resources. In addition, the relationship between our attempts at control and performance at the system-level over time is not well understood either. This research contributes to our understanding of design in common-pool resource systems by using a multi-methods approach to investigate longitudinal data on an innovative participatory design intervention implemented in nineteen small-scale, farmer-managed irrigation systems in the Indrawati River Basin of Nepal over the last three decades. The intervention was intended as an experiment in using participatory planning, design and construction processes to increase food security and strengthen the self-sufficiency and self-governing capacity of resource user groups within the poorest district in Nepal. This work is the first time that theories of participatory design-processes have been empirically tested against longitudinal data on a number of small-scale, locally managed common-pool resource systems. It clarifies and helps to develop a theory of design in this setting for both scientific and practical purposes.
ContributorsRatajczyk, Elicia Beth (Author) / Anderies, John M (Thesis advisor) / York, Abigail (Committee member) / Shivakoti, Ganesh P (Committee member) / Arizona State University (Publisher)
Created2018
171564-Thumbnail Image.png
Description
There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several

There has been a decrease in the fertility rate over the years due to today’s younger generation facing more pressure in the workplace and their personal lives. With an aging population, more and more older people with limited mobility will require nursing care for their daily activities. There are several applications for wearable sensor networks presented in this paper. The study will also present a motion capture system using inertial measurement units (IMUs) and a pressure-sensing insole with a control system for gait assistance using wearable sensors. This presentation will provide details on the implementation and calibration of the pressure-sensitive insole, the IMU-based motion capture system, as well as the hip exoskeleton robot. Furthermore, the estimation of the Ground Reaction Force (GRF) from the insole design and implementation of the motion tracking using quaternion will be discussed in this document.
ContributorsLi, Xunguang (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Subramanian, Susheelkumar (Committee member) / Arizona State University (Publisher)
Created2022
157921-Thumbnail Image.png
Description
It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks

It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea

into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation.
ContributorsWASWA, PETER (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2019