Matching Items (2)
Filtering by

Clear all filters

156230-Thumbnail Image.png
Description
Glucose sensors have had many paradigm shifts, beginning with using urine, to point of care blood, now being approved for implant. This review covers various aspects of the sensors, ranging from the types of surface chemistry, and electron transduction. All the way to the algorithms, and filters used to alter

Glucose sensors have had many paradigm shifts, beginning with using urine, to point of care blood, now being approved for implant. This review covers various aspects of the sensors, ranging from the types of surface chemistry, and electron transduction. All the way to the algorithms, and filters used to alter and understand the signal being transduced. Focus is given to Dr. Hellerâ’s work using redox mediators, as well as Dr. Sode in his advances for direct electron transfer. Simple process of designing sensors are described, as well as the possible errors that may come with glucose sensor use. Finally, a small window into the future trends of glucose sensors is described both from a device view point, as well as organic viewpoint. Using this history the initial point of care sensor for insulin published through LaBelle’s lab is reevaluated critically. In addition, the modeling of the possibility of continuously measuring insulin is researched. To better understand the design for a continuous glucose sensor, the basic kinetic model is set up, and ran through a design of experiments to then optimized what the binding kinetics for an ideal insulin molecular recognition element would be. In addition, the phenomena of two electrochemical impedance spectroscopy peaks is analyzed, and two theories are suggests, and demonstrated to a modest level.
ContributorsProbst, David L (Author) / LaBelle, Jeffery (Thesis advisor) / Caplan, Micheal (Committee member) / Cook, Curtiss (Committee member) / Arizona State University (Publisher)
Created2018
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016