Matching Items (2)
154145-Thumbnail Image.png
Description
This study was conducted to assess the performance of 176 students who received algebra instruction through an online platform presented in one of two experimental conditions to explore the effect of personalized learning paths by comparing it with linearly flowing instruction. The study was designed around eight research questions investigating

This study was conducted to assess the performance of 176 students who received algebra instruction through an online platform presented in one of two experimental conditions to explore the effect of personalized learning paths by comparing it with linearly flowing instruction. The study was designed around eight research questions investigating the effect of personalized learning paths on students’ learning, intrinsic motivation and satisfaction with their experience. Quantitative results were analyzed using Analysis of Variance (ANOVA), Analysis of Covariance (ANCOVA) and split-plot ANOVA methods. Additionally, qualitative feedback data were gathered from students and teachers on their experience to better explain the quantitative findings as well as improve understanding of how to effectively design an adaptive personalized learning platform. Quantitative results of the study showed no statistical difference between students assigned to treatments that compared linear and adaptive personalized instructional flows.

The lack of significant differences was explained by two main factors: (a) low usage and (b) platform and content related issues. Low usage may have prevented students from being exposed to the platforms long enough to create a potential for differences between the groups. Additionally, the reasons for low usage may in part be explained by the qualitative findings, which indicated that unmotivated and tired teachers and students were not very enthusiastic about the study because it occurred near the end of school year. Further, computer access was a challenging issue at the school throughout the study. On the other hand, platform and content related issues worked to inhibit the potential beneficial effects of the platforms. The three prominent issues were: (a) the majority of the students found the content boring or difficult, (b) repeated recommendations from the adaptive platform created frustration, and (c) a barely moving progress bar caused disappointment among participants.
ContributorsBicer, Alpay (Author) / Bitter, Gary G. (Thesis advisor) / Buss, Ray R (Committee member) / Legacy, Jane M. (Committee member) / Arizona State University (Publisher)
Created2015
168452-Thumbnail Image.png
Description
Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learners' behavior and

Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learners' behavior and assessing learners' performance for personalization. Hands-on labs are a critical learning approach for cybersecurity education. It provides real-world complex problem scenarios and helps learners develop a deeper understanding of knowledge and concepts while solving real-world problems. But there are unique challenges when using hands-on labs for cybersecurity education. Existing hands-on lab exercises materials are usually managed in a problem-centric fashion, while it lacks a coherent way to manage existing labs and provide productive lab exercising plans for cybersecurity learners. To solve these challenges, a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment is established. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. A knowledge graph in the cybersecurity domain is also constructed using Natural language processing (NLP) technologies including word embedding and hyperlink-based concept mining. This knowledge graph is then utilized during the regular learning process to build a personalized lab recommendation system by suggesting relevant labs based on students' past learning history to maximize their learning outcomes. To evaluate ThoTh Lab, several in-class experiments were carried out in cybersecurity classes for both graduate and undergraduate students at Arizona State University and data was collected over several semesters. The case studies show that, by leveraging the personalized lab platform, students tend to be more absorbed in a lab project, show more interest in the cybersecurity area, spend more effort on the project and gain enhanced learning outcomes.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Li, Baoxin (Committee member) / Zhao, Ming (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2021