Matching Items (3)
Filtering by

Clear all filters

154905-Thumbnail Image.png
Description
Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150, intraclass correlation (ICC) ranging from 0.10 to 0.50, model

Through a two study simulation design with different design conditions (sample size at level 1 (L1) was set to 3, level 2 (L2) sample size ranged from 10 to 75, level 3 (L3) sample size ranged from 30 to 150, intraclass correlation (ICC) ranging from 0.10 to 0.50, model complexity ranging from one predictor to three predictors), this study intends to provide general guidelines about adequate sample sizes at three levels under varying ICC conditions for a viable three level HLM analysis (e.g., reasonably unbiased and accurate parameter estimates). In this study, the data generating parameters for the were obtained using a large-scale longitudinal data set from North Carolina, provided by the National Center on Assessment and Accountability for Special Education (NCAASE). I discuss ranges of sample sizes that are inadequate or adequate for convergence, absolute bias, relative bias, root mean squared error (RMSE), and coverage of individual parameter estimates. The current study, with the help of a detailed two-part simulation design for various sample sizes, model complexity and ICCs, provides various options of adequate sample sizes under different conditions. This study emphasizes that adequate sample sizes at either L1, L2, and L3 can be adjusted according to different interests in parameter estimates, different ranges of acceptable absolute bias, relative bias, root mean squared error, and coverage. Under different model complexity and varying ICC conditions, this study aims to help researchers identify L1, L2, and L3 sample size or both as the source of variation in absolute bias, relative bias, RMSE, or coverage proportions for a certain parameter estimate. This assists researchers in making better decisions for selecting adequate sample sizes in a three-level HLM analysis. A limitation of the study was the use of only a single distribution for the dependent and explanatory variables, different types of distributions and their effects might result in different sample size recommendations.
ContributorsYel, Nedim (Author) / Levy, Roy (Thesis advisor) / Elliott, Stephen N. (Thesis advisor) / Schulte, Ann C (Committee member) / Iida, Masumi (Committee member) / Arizona State University (Publisher)
Created2016
155625-Thumbnail Image.png
Description
The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of

The process of combining data is one in which information from disjoint datasets sharing at least a number of common variables is merged. This process is commonly referred to as data fusion, with the main objective of creating a new dataset permitting more flexible analyses than the separate analysis of each individual dataset. Many data fusion methods have been proposed in the literature, although most utilize the frequentist framework. This dissertation investigates a new approach called Bayesian Synthesis in which information obtained from one dataset acts as priors for the next analysis. This process continues sequentially until a single posterior distribution is created using all available data. These informative augmented data-dependent priors provide an extra source of information that may aid in the accuracy of estimation. To examine the performance of the proposed Bayesian Synthesis approach, first, results of simulated data with known population values under a variety of conditions were examined. Next, these results were compared to those from the traditional maximum likelihood approach to data fusion, as well as the data fusion approach analyzed via Bayes. The assessment of parameter recovery based on the proposed Bayesian Synthesis approach was evaluated using four criteria to reflect measures of raw bias, relative bias, accuracy, and efficiency. Subsequently, empirical analyses with real data were conducted. For this purpose, the fusion of real data from five longitudinal studies of mathematics ability varying in their assessment of ability and in the timing of measurement occasions was used. Results from the Bayesian Synthesis and data fusion approaches with combined data using Bayesian and maximum likelihood estimation methods were reported. The results illustrate that Bayesian Synthesis with data driven priors is a highly effective approach, provided that the sample sizes for the fused data are large enough to provide unbiased estimates. Bayesian Synthesis provides another beneficial approach to data fusion that can effectively be used to enhance the validity of conclusions obtained from the merging of data from different studies.
ContributorsMarcoulides, Katerina M (Author) / Grimm, Kevin (Thesis advisor) / Levy, Roy (Thesis advisor) / MacKinnon, David (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2017
154396-Thumbnail Image.png
Description
Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different

Measurement invariance exists when a scale functions equivalently across people and is therefore essential for making meaningful group comparisons. Often, measurement invariance is examined with independent and identically distributed data; however, there are times when the participants are clustered within units, creating dependency in the data. Researchers have taken different approaches to address this dependency when studying measurement invariance (e.g., Kim, Kwok, & Yoon, 2012; Ryu, 2014; Kim, Yoon, Wen, Luo, & Kwok, 2015), but there are no comparisons of the various approaches. The purpose of this master's thesis was to investigate measurement invariance in multilevel data when the grouping variable was a level-1 variable using five different approaches. Publicly available data from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K) was used as an illustrative example. The construct of early behavior, which was made up of four teacher-rated behavior scales, was evaluated for measurement invariance in relation to gender. In the specific case of this illustrative example, the statistical conclusions of the five approaches were in agreement (i.e., the loading of the externalizing item and the intercept of the approaches to learning item were not invariant). Simulation work should be done to investigate in which situations the conclusions of these approaches diverge.
ContributorsGunn, Heather (Author) / Grimm, Kevin J. (Thesis advisor) / Aiken, Leona S. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016