Matching Items (28)
Filtering by

Clear all filters

156112-Thumbnail Image.png
Description
Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a

Understanding how adherence affects outcomes is crucial when developing and assigning interventions. However, interventions are often evaluated by conducting randomized experiments and estimating intent-to-treat effects, which ignore actual treatment received. Dose-response effects can supplement intent-to-treat effects when participants are offered the full dose but many only receive a partial dose due to nonadherence. Using these data, we can estimate the magnitude of the treatment effect at different levels of adherence, which serve as a proxy for different levels of treatment. In this dissertation, I conducted Monte Carlo simulations to evaluate when linear dose-response effects can be accurately and precisely estimated in randomized experiments comparing a no-treatment control condition to a treatment condition with partial adherence. Specifically, I evaluated the performance of confounder adjustment and instrumental variable methods when their assumptions were met (Study 1) and when their assumptions were violated (Study 2). In Study 1, the confounder adjustment and instrumental variable methods provided unbiased estimates of the dose-response effect across sample sizes (200, 500, 2,000) and adherence distributions (uniform, right skewed, left skewed). The adherence distribution affected power for the instrumental variable method. In Study 2, the confounder adjustment method provided unbiased or minimally biased estimates of the dose-response effect under no or weak (but not moderate or strong) unobserved confounding. The instrumental variable method provided extremely biased estimates of the dose-response effect under violations of the exclusion restriction (no direct effect of treatment assignment on the outcome), though less severe violations of the exclusion restriction should be investigated.
ContributorsMazza, Gina L (Author) / Grimm, Kevin J. (Thesis advisor) / West, Stephen G. (Thesis advisor) / Mackinnon, David P (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156579-Thumbnail Image.png
Description
The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response theory (IRT), and IRT scores can subsequently be used to

The goal of diagnostic assessment is to discriminate between groups. In many cases, a binary decision is made conditional on a cut score from a continuous scale. Psychometric methods can improve assessment by modeling a latent variable using item response theory (IRT), and IRT scores can subsequently be used to determine a cut score using receiver operating characteristic (ROC) curves. Psychometric methods provide reliable and interpretable scores, but the prediction of the diagnosis is not the primary product of the measurement process. In contrast, machine learning methods, such as regularization or binary recursive partitioning, can build a model from the assessment items to predict the probability of diagnosis. Machine learning predicts the diagnosis directly, but does not provide an inferential framework to explain why item responses are related to the diagnosis. It remains unclear whether psychometric and machine learning methods have comparable accuracy or if one method is preferable in some situations. In this study, Monte Carlo simulation methods were used to compare psychometric and machine learning methods on diagnostic classification accuracy. Results suggest that classification accuracy of psychometric models depends on the diagnostic-test correlation and prevalence of diagnosis. Also, machine learning methods that reduce prediction error have inflated specificity and very low sensitivity compared to the data-generating model, especially when prevalence is low. Finally, machine learning methods that use ROC curves to determine probability thresholds have comparable classification accuracy to the psychometric models as sample size, number of items, and number of item categories increase. Therefore, results suggest that machine learning models could provide a viable alternative for classification in diagnostic assessments. Strengths and limitations for each of the methods are discussed, and future directions are considered.
ContributorsGonzález, Oscar (Author) / Mackinnon, David P (Thesis advisor) / Edwards, Michael C (Thesis advisor) / Grimm, Kevin J. (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156690-Thumbnail Image.png
Description
Dynamic Bayesian networks (DBNs; Reye, 2004) are a promising tool for modeling student proficiency under rich measurement scenarios (Reichenberg, in press). These scenarios often present assessment conditions far more complex than what is seen with more traditional assessments and require assessment arguments and psychometric models capable of integrating those complexities.

Dynamic Bayesian networks (DBNs; Reye, 2004) are a promising tool for modeling student proficiency under rich measurement scenarios (Reichenberg, in press). These scenarios often present assessment conditions far more complex than what is seen with more traditional assessments and require assessment arguments and psychometric models capable of integrating those complexities. Unfortunately, DBNs remain understudied and their psychometric properties relatively unknown. If the apparent strengths of DBNs are to be leveraged, then the body of literature surrounding their properties and use needs to be expanded upon. To this end, the current work aimed at exploring the properties of DBNs under a variety of realistic psychometric conditions. A two-phase Monte Carlo simulation study was conducted in order to evaluate parameter recovery for DBNs using maximum likelihood estimation with the Netica software package. Phase 1 included a limited number of conditions and was exploratory in nature while Phase 2 included a larger and more targeted complement of conditions. Manipulated factors included sample size, measurement quality, test length, the number of measurement occasions. Results suggested that measurement quality has the most prominent impact on estimation quality with more distinct performance categories yielding better estimation. While increasing sample size tended to improve estimation, there were a limited number of conditions under which greater samples size led to more estimation bias. An exploration of this phenomenon is included. From a practical perspective, parameter recovery appeared to be sufficient with samples as low as N = 400 as long as measurement quality was not poor and at least three items were present at each measurement occasion. Tests consisting of only a single item required exceptional measurement quality in order to adequately recover model parameters. The study was somewhat limited due to potentially software-specific issues as well as a non-comprehensive collection of experimental conditions. Further research should replicate and, potentially expand the current work using other software packages including exploring alternate estimation methods (e.g., Markov chain Monte Carlo).
ContributorsReichenberg, Raymond E (Author) / Levy, Roy (Thesis advisor) / Eggum-Wilkens, Natalie (Thesis advisor) / Iida, Masumi (Committee member) / DeLay, Dawn (Committee member) / Arizona State University (Publisher)
Created2018
156621-Thumbnail Image.png
Description
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline models, the bifactor models fit data well and had minimal bias in latent mean estimation. However, the low convergence rates of fitting bifactor models to data with complex structures and small sample sizes caused concern. On the other hand, effects of fitting the misspecified single-factor models on the assessments of MI and latent means differed by the bifactor structures underlying data. For data following one general factor and one group factor affecting a small set of indicators, the effects of ignoring the group factor in analysis models on the tests of MI and latent mean differences were mild. In contrast, for data following one general factor and several group factors, oversimplifications of analysis models can lead to inaccurate conclusions regarding MI assessment and latent mean estimation.
ContributorsXu, Yuning (Author) / Green, Samuel (Thesis advisor) / Levy, Roy (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2018
157322-Thumbnail Image.png
Description
With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been

With improvements in technology, intensive longitudinal studies that permit the investigation of daily and weekly cycles in behavior have increased exponentially over the past few decades. Traditionally, when data have been collected on two variables over time, multivariate time series approaches that remove trends, cycles, and serial dependency have been used. These analyses permit the study of the relationship between random shocks (perturbations) in the presumed causal series and changes in the outcome series, but do not permit the study of the relationships between cycles. Liu and West (2016) proposed a multilevel approach that permitted the study of potential between subject relationships between features of the cycles in two series (e.g., amplitude). However, I show that the application of the Liu and West approach is restricted to a small set of features and types of relationships between the series. Several authors (e.g., Boker & Graham, 1998) proposed a connected mass-spring model that appears to permit modeling of more general cyclic relationships. I showed that the undamped connected mass-spring model is also limited and may be unidentified. To test the severity of the restrictions of the motion trajectories producible by the undamped connected mass-spring model I mathematically derived their connection to the force equations of the undamped connected mass-spring system. The mathematical solution describes the domain of the trajectory pairs that are producible by the undamped connected mass-spring model. The set of producible trajectory pairs is highly restricted, and this restriction sets major limitations on the application of the connected mass-spring model to psychological data. I used a simulation to demonstrate that even if a pair of psychological time-varying variables behaved exactly like two masses in an undamped connected mass-spring system, the connected mass-spring model would not yield adequate parameter estimates. My simulation probed the performance of the connected mass-spring model as a function of several aspects of data quality including number of subjects, series length, sampling rate relative to the cycle, and measurement error in the data. The findings can be extended to damped and nonlinear connected mass-spring systems.
ContributorsMartynova, Elena (M.A.) (Author) / West, Stephen G. (Thesis advisor) / Amazeen, Polemnia (Committee member) / Tein, Jenn-Yun (Committee member) / Arizona State University (Publisher)
Created2019
157343-Thumbnail Image.png
Description
Previous research has shown functional mixed-effects models and traditional mixed-effects models perform similarly when recovering mean and individual trajectories (Fine, Suk, & Grimm, 2019). However, Fine et al. (2019) showed traditional mixed-effects models were able to more accurately recover the underlying mean curves compared to functional mixed-effects models. That project

Previous research has shown functional mixed-effects models and traditional mixed-effects models perform similarly when recovering mean and individual trajectories (Fine, Suk, & Grimm, 2019). However, Fine et al. (2019) showed traditional mixed-effects models were able to more accurately recover the underlying mean curves compared to functional mixed-effects models. That project generated data following a parametric structure. This paper extended previous work and aimed to compare nonlinear mixed-effects models and functional mixed-effects models on their ability to recover underlying trajectories which were generated from an inherently nonparametric process. This paper introduces readers to nonlinear mixed-effects models and functional mixed-effects models. A simulation study is then presented where the mean and random effects structure of the simulated data were generated using B-splines. The accuracy of recovered curves was examined under various conditions including sample size, number of time points per curve, and measurement design. Results showed the functional mixed-effects models recovered the underlying mean curve more accurately than the nonlinear mixed-effects models. In general, the functional mixed-effects models recovered the underlying individual curves more accurately than the nonlinear mixed-effects models. Progesterone cycle data from Brumback and Rice (1998) were then analyzed to demonstrate the utility of both models. Both models were shown to perform similarly when analyzing the progesterone data.
ContributorsFine, Kimberly L (Author) / Grimm, Kevin J. (Thesis advisor) / Edward, Mike (Committee member) / O'Rourke, Holly (Committee member) / McNeish, Dan (Committee member) / Arizona State University (Publisher)
Created2019
157034-Thumbnail Image.png
Description
To make meaningful comparisons on a construct of interest across groups or over time, measurement invariance needs to exist for at least a subset of the observed variables that define the construct. Often, chi-square difference tests are used to test for measurement invariance. However, these statistics are affected by sample

To make meaningful comparisons on a construct of interest across groups or over time, measurement invariance needs to exist for at least a subset of the observed variables that define the construct. Often, chi-square difference tests are used to test for measurement invariance. However, these statistics are affected by sample size such that larger sample sizes are associated with a greater prevalence of significant tests. Thus, using other measures of non-invariance to aid in the decision process would be beneficial. For this dissertation project, I proposed four new effect size measures of measurement non-invariance and analyzed a Monte Carlo simulation study to evaluate their properties and behavior in addition to the properties and behavior of an already existing effect size measure of non-invariance. The effect size measures were evaluated based on bias, variability, and consistency. Additionally, the factors that affected the value of the effect size measures were analyzed. All studied effect sizes were consistent, but three were biased under certain conditions. Further work is needed to establish benchmarks for the unbiased effect sizes.
ContributorsGunn, Heather J (Author) / Grimm, Kevin J. (Thesis advisor) / Edwards, Michael C (Thesis advisor) / Tein, Jenn-Yun (Committee member) / Anderson, Samantha F. (Committee member) / Arizona State University (Publisher)
Created2019
154063-Thumbnail Image.png
Description
Although models for describing longitudinal data have become increasingly sophisticated, the criticism of even foundational growth curve models remains challenging. The challenge arises from the need to disentangle data-model misfit at multiple and interrelated levels of analysis. Using posterior predictive model checking (PPMC)—a popular Bayesian framework for model criticism—the performance

Although models for describing longitudinal data have become increasingly sophisticated, the criticism of even foundational growth curve models remains challenging. The challenge arises from the need to disentangle data-model misfit at multiple and interrelated levels of analysis. Using posterior predictive model checking (PPMC)—a popular Bayesian framework for model criticism—the performance of several discrepancy functions was investigated in a Monte Carlo simulation study. The discrepancy functions of interest included two types of conditional concordance correlation (CCC) functions, two types of R2 functions, two types of standardized generalized dimensionality discrepancy (SGDDM) functions, the likelihood ratio (LR), and the likelihood ratio difference test (LRT). Key outcomes included effect sizes of the design factors on the realized values of discrepancy functions, distributions of posterior predictive p-values (PPP-values), and the proportion of extreme PPP-values.

In terms of the realized values, the behavior of the CCC and R2 functions were generally consistent with prior research. However, as diagnostics, these functions were extremely conservative even when some aspect of the data was unaccounted for. In contrast, the conditional SGDDM (SGDDMC), LR, and LRT were generally sensitive to the underspecifications investigated in this work on all outcomes considered. Although the proportions of extreme PPP-values for these functions tended to increase in null situations for non-normal data, this behavior may have reflected the true misfit that resulted from the specification of normal prior distributions. Importantly, the LR and the SGDDMC to a greater extent exhibited some potential for untangling the sources of data-model misfit. Owing to connections of growth curve models to the more fundamental frameworks of multilevel modeling, structural equation models with a mean structure, and Bayesian hierarchical models, the results of the current work may have broader implications that warrant further research.
ContributorsFay, Derek (Author) / Levy, Roy (Thesis advisor) / Thompson, Marilyn (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2015
154781-Thumbnail Image.png
Description
Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection

Researchers who conduct longitudinal studies are inherently interested in studying individual and population changes over time (e.g., mathematics achievement, subjective well-being). To answer such research questions, models of change (e.g., growth models) make the assumption of longitudinal measurement invariance. In many applied situations, key constructs are measured by a collection of ordered-categorical indicators (e.g., Likert scale items). To evaluate longitudinal measurement invariance with ordered-categorical indicators, a set of hierarchical models can be sequentially tested and compared. If the statistical tests of measurement invariance fail to be supported for one of the models, it is useful to have a method with which to gauge the practical significance of the differences in measurement model parameters over time. Drawing on studies of latent growth models and second-order latent growth models with continuous indicators (e.g., Kim & Willson, 2014a; 2014b; Leite, 2007; Wirth, 2008), this study examined the performance of a potential sensitivity analysis to gauge the practical significance of violations of longitudinal measurement invariance for ordered-categorical indicators using second-order latent growth models. The change in the estimate of the second-order growth parameters following the addition of an incorrect level of measurement invariance constraints at the first-order level was used as an effect size for measurement non-invariance. This study investigated how sensitive the proposed sensitivity analysis was to different locations of non-invariance (i.e., non-invariance in the factor loadings, the thresholds, and the unique factor variances) given a sufficient sample size. This study also examined whether the sensitivity of the proposed sensitivity analysis depended on a number of other factors including the magnitude of non-invariance, the number of non-invariant indicators, the number of non-invariant occasions, and the number of response categories in the indicators.
ContributorsLiu, Yu, Ph.D (Author) / West, Stephen G. (Thesis advisor) / Tein, Jenn-Yun (Thesis advisor) / Green, Samuel (Committee member) / Grimm, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2016
154889-Thumbnail Image.png
Description
Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does not discuss the importance of time metric. Furthermore, there is

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does not discuss the importance of time metric. Furthermore, there is little research using simulations to investigate LDS models. This study examined the influence of time metric on model estimation, interpretation, parameter estimate accuracy, and convergence in LDS models using empirical simulations. Results indicated that for a time structure with a true time metric where participants had different starting points and unequally spaced intervals, LDS models fit with a restructured and less informative time metric resulted in biased parameter estimates. However, models examined using the true time metric were less likely to converge than models using the restructured time metric, likely due to missing data. Where participants had different starting points but equally spaced intervals, LDS models fit with a restructured time metric resulted in biased estimates of intercept means, but all other parameter estimates were unbiased, and models examined using the true time metric had less convergence than the restructured time metric as well due to missing data. The findings of this study support prior research on time metric in longitudinal models, and further research should examine these findings under alternative conditions. The importance of these findings for substantive researchers is discussed.
ContributorsO'Rourke, Holly P (Author) / Grimm, Kevin J. (Thesis advisor) / Mackinnon, David P (Thesis advisor) / Chassin, Laurie (Committee member) / Aiken, Leona S. (Committee member) / Arizona State University (Publisher)
Created2016