Matching Items (4)
Filtering by

Clear all filters

156630-Thumbnail Image.png
Description
Monitoring human exposure to chemicals posing public health threats is critically important for risk management and for informing regulatory actions. Chemical threats result from both environmental pollutants and elected substance use (e.g., consumption of drugs, alcohol and tobacco). Measuring chemical occurrence and concentrations in environmental matrices can help to pinpoint

Monitoring human exposure to chemicals posing public health threats is critically important for risk management and for informing regulatory actions. Chemical threats result from both environmental pollutants and elected substance use (e.g., consumption of drugs, alcohol and tobacco). Measuring chemical occurrence and concentrations in environmental matrices can help to pinpoint human exposure routes. For instance, indoor dust, a sink of indoor environmental contaminants, can serve to assess indoor air contamination and associated human exposures. Urban wastewater arriving at treatment plants contains urine and stool from the general population, the analysis of which can provide information on chemical threats in the community and ongoing harmful exposures. Analysis of sewage sludge can serve to reveal the identity and quantity of persistent organic pollutants in cities and inform estimates of toxic body burdens in local populations.

The objective of this dissertation was to investigate the occurrence and quantity of select, potentially harmful, anthropogenic chemicals in various environmental matrices and to explore the diagnostic value of analytical assays for informing public health decision-making. This dissertation (i) is the first to report spatio-temporal variations and estrogenic burdens of five parabens in sewage sludge from at the U.S. nationwide scale; (ii) represents the first China-wide survey to assess the occurrence and toxic emissions of parabens, triclosan, triclocarban, as well as triclocarban metabolites and transformation products contained in Chinese sewage sludge; (iii) documents the first use of a dispersive solid phase extraction method for indoor dust to measure dust-borne parabens, triclosan and triclocarban and estimating associated human exposures from dust ingestion; and (iv) is the first U.S. study to assess population-level alcohol and nicotine consumption in three U.S. communities using wastewater-based epidemiology (WBE). Obtained data on baseline levels of selected emerging contaminants in sewage sludge and indoor dust can serve to inform the future monitoring needs, risk assessment, and policy making. This work showcases the utility of WBE and urban metabolism metrology via dust and sewage sludge analysis to assess human behavior (e.g., drinking and smoking) and exposure risks more rapidly, efficiently and anonymously than traditional approaches can.
ContributorsChen, Jing (Author) / Halden, Rolf U. (Thesis advisor) / Borges, Chad R (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2018
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017
189363-Thumbnail Image.png
Description
This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution

This dissertation focused on studying risks associated with emerging drinking water contaminants and tradeoffs related to water management interventions. The built environment impacts health, as humans on average spend ~90% of their time indoors. Federal regulations generally focus on drinking water at the water treatment plant and within the distribution system as opposed to when it enters buildings after crossing the property line. If drinking water is not properly managed in buildings, it can be a source or amplifier of microbial and chemical contaminants. Unlike regulations for chemical contaminants that are risk-based, for pathogens, regulations are either based on recommended treatment technologies or designated as zero, which is not achievable in practice. Practice-based judgments are typically made at the building level to maintain water quality. This research focuses on two drinking water opportunistic pathogens of public health concern, Legionella pneumophila and Mycobacterium avium complex (MAC). Multiple aspects of drinking water quality in two green buildings were monitored in tandem with water management interventions. Additionally, a quantitative microbial risk assessment framework was used to predict risk-based critical concentrations of MAC for drinking water-related exposures in the indoor environment corresponding to a 1 in 10,000 annual infection target risk benchmark. The overall goal of this work was to inform the development of water management plans and guidelines for buildings that will improve water quality in the built environment and promote better public health. It was determined that a whole building water softening system with ion exchange softening resin and expansion tanks were unexplored reservoirs for the colonization of L. pneumophila. Furthermore, it was observed that typical water management interventions such as flushing and thermal disinfection did not always mitigate water quality issues. Thus, there was a need to implement several atypical interventions such as equipment replacement to improve the building water quality. This work has contributed comprehensive field studies and models that have highlighted the need for additional niches, facility management challenges, and risk tradeoffs for focus in water safety plans. The work also informs additional risk-based water quality policy approaches for reducing drinking water risks.
ContributorsJoshi, Sayalee (Author) / Hamilton, Kerry A (Thesis advisor) / Abbaszadegan, Morteza (Committee member) / Conroy-Ben, Otakuye (Committee member) / Halden, Rolf (Committee member) / Arizona State University (Publisher)
Created2023
157709-Thumbnail Image.png
Description
This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize lightweight geopolymer matrices from fly ash through carbonate-based activation. Sodium carbonate (Na2CO3) was used in this study to produce controlled pores through the release of CO2 during the low-temperature decomposition of Na2CO3. Stage 3 focuses on 3D printing of binders using geopolymeric binders along with several OPC-based 3D printable binders. In Stage 4, synthesis and characterization of 3D-printable foamed fly ash-based geopolymer matrices for thermal insulation is the focus. A surfactant-based foaming process, multi-step mixing that ensures foam jamming transition and thus a dry foam, and microstructural packing to ensure adequate skeletal density are implemented to develop foamed suspensions amenable to 3D-printing. The last stage of this research develops 3D-printable alkali-activated ground granulated blast furnace slag mixture. Slag is used as the source of aluminosilicate and shows excellent mechanical properties when activated by highly alkaline activator (NaOH + sodium silicate solution). However, alkali activated slag sets and hardens rapidly which is undesirable for 3D printing. Thus, a novel mixing procedure is developed to significantly extend the setting time of slag activated with an alkaline activator to suit 3D printing applications without the use of any retarding admixtures. This dissertation, thus advances the field of sustainable and 3D-printable matrices and opens up a new avenue for faster and economical construction using specialized materials.
ContributorsAlghamdi, Hussam Suhail G (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Abbaszadegan, Morteza (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2019