Matching Items (4)
Filtering by

Clear all filters

155481-Thumbnail Image.png
Description
Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic acid (PAA) upstream of an ultraviolet (UV) irradiation reactor. Two studies were conducted, one in pilot-scale field conditions and

Advanced oxidation processes (AOP’s) are water/wastewater treatment processes simultaneously providing disinfection and potential oxidation of contaminants that may cause long-term adverse health effects in humans. One AOP involves injecting peracetic acid (PAA) upstream of an ultraviolet (UV) irradiation reactor. Two studies were conducted, one in pilot-scale field conditions and another under laboratory conditions. A pilot-scale NeoTech UV reactor (rated for 375 GPM) was used in the pilot study, where a smaller version of this unit was used in the laboratory study (20 to 35 GPM). The pilot study analyzed coliform disinfection and also monitored water quality parameters including UV transmittance (UVT), pH and chlorine residual. Pilot study UV experiments indicate the unit is effectively treating flow streams (>6 logs total coliforms) twice the 95% UVT unit capacity (750 GPM or 17 mJ/cm2 UV Dose). The results were inconclusive on PAA/UV inactivation due to high data variability and field operation conditions creating low inlet concentrations.Escherichia coli (E. coli) bacteria and the enterobacteria phage P22—a surrogate for enteric viruses—were analyzed. UV inactivated >7.9 and 4 logs of E. coli and P22 respectively at a 16.8 mJ/cm2 UV dose in test water containing a significant organics concentration. When PAA doses of 0.25 and 0.5 mg/L were injected upstream of UV at approximately the same UV Dose, the average E.coli log inactivation increased to >8.9 and >9 logs respectively, but P22 inactivation decreased to 2.9 and 3.0 logs, respectively. A bench-scale study with PAA was also conducted for 5, 10 and 30 minutes of contact time, where 0.25 and 0.5 mg/L had <1 log inactivation of E. coli and P22 after 30 minutes of contact time. In addition, degradation of the chemical N-Nitrosodimethylamine (NDMA) in tap water was analyzed, where UV degraded NDMA by 48 to 97% for 4 and 0.5 GPM flowrates, respectively. Adding 0.5 mg/L PAA upstream of UV did not significantly improve NDMA degradation.

The results under laboratory conditions indicate that PAA/UV have synergy in the inactivation of bacteria, but decrease virus inactivation. In addition, the pilot study demonstrates the applicability of the technology for full scale operation.
ContributorsCooper, Samantha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
155850-Thumbnail Image.png
Description
This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22

This study was designed to provide insight into microbial transport kinetics which might be applied to bioremediation technology development and prevention of groundwater susceptibility to pathogen contamination. Several pilot-scale experiments were conducted in a saturated, 2 dimensional, packed porous media tank to investigate the transport of Escherichia coli bacteria, P22 bacteriophage, and a visual tracer and draw comparisons and/or conclusions. A constructed tank was packed with an approximate 3,700 cubic inches (in3) of a fine grained, homogeneous, chemically inert sand which allowed for a controlled system. Sampling ports were located at 5, 15, 25, and 25 vertical inches from the base of the 39 inch saturated zone and were used to assess the transport of the selected microorganisms. Approximately 105 cells of E. coli or P22 were injected into the tank and allowed to move through the media at approximately 10.02 inches per day. Samples were collected intermittently after injection based off of an estimated sampling schedule established from the visual tracer.

The results suggest that bacteriophages pass through soil faster and with greater recovery than bacteria. P22 in the tank reservoir experienced approximately 1 log reduction after 36 hours. After 85 hours, P22 was still detected in the reservoir after experiencing a 2 log reduction from the start of the experiment. E. coli either did not reach the outlet or died before sampling, while P22 was able to be recovered. Bacterial breakthrough curves were produced for the microbial indicators and illustrate the peak concentrations found for each sampling port. For E. coli, concentrations at the 5 inch port peaked at a maximum of 5170 CFU/mL, and eventually at the 25 inch port at a maximum of 90 CFU/mL. It is presumed that E. coli might have experienced significant filtration, straining and attachment, while P22 might have experienced little adsorption and instead was transported rapidly in long distances and was able to survive for the duration of the experiment.
ContributorsAcosta, Jazlyn Cauren (Author) / Abbaszadegan, Morteza (Thesis advisor) / Dahlen, Paul (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2017
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017
157709-Thumbnail Image.png
Description
This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize lightweight geopolymer matrices from fly ash through carbonate-based activation. Sodium carbonate (Na2CO3) was used in this study to produce controlled pores through the release of CO2 during the low-temperature decomposition of Na2CO3. Stage 3 focuses on 3D printing of binders using geopolymeric binders along with several OPC-based 3D printable binders. In Stage 4, synthesis and characterization of 3D-printable foamed fly ash-based geopolymer matrices for thermal insulation is the focus. A surfactant-based foaming process, multi-step mixing that ensures foam jamming transition and thus a dry foam, and microstructural packing to ensure adequate skeletal density are implemented to develop foamed suspensions amenable to 3D-printing. The last stage of this research develops 3D-printable alkali-activated ground granulated blast furnace slag mixture. Slag is used as the source of aluminosilicate and shows excellent mechanical properties when activated by highly alkaline activator (NaOH + sodium silicate solution). However, alkali activated slag sets and hardens rapidly which is undesirable for 3D printing. Thus, a novel mixing procedure is developed to significantly extend the setting time of slag activated with an alkaline activator to suit 3D printing applications without the use of any retarding admixtures. This dissertation, thus advances the field of sustainable and 3D-printable matrices and opens up a new avenue for faster and economical construction using specialized materials.
ContributorsAlghamdi, Hussam Suhail G (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Abbaszadegan, Morteza (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2019