Matching Items (2)
Filtering by

Clear all filters

153542-Thumbnail Image.png
Description
Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin

Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin checking for these impacts. It examined how nine adults in their workplace solved problems that purportedly entailed proportional reasoning and supporting rational number concepts (cognates).

The research focused on four questions: a) in what ways do workers encounter and utilize the cognates while on the job; b) do workers engage cognate problems they encounter at work differently from similar cognate problems found in a textbook; c) what mathematical difficulties involving the cognates do workers experience while on the job, and; d) what tools, techniques, and social supports do workers use to augment or supplant their own abilities when confronted with difficulties involving the cognates.

Noteworthy findings included: a) individual workers encountered cognate problems at a rate of nearly four times per hour; b) all of the workers engaged the cognates primarily via discourse with others and not by written or electronic means; c) generally, workers had difficulty with units and solving problems involving intensive ratios; d) many workers regularly used a novel form of guess & check to produce a loose estimate as an answer; and e) workers relied on the social structure of the store to mitigate the impact and defuse the responsibility for any errors they made.

Based on the totality of the evidence, three hypotheses were discussed: a) the binomial aspect of a conjecture that stated employees were hired either with sufficient mathematical skills or with deficient skills was rejected; b) heuristics, tables, and stand-ins were maximally effective only if workers individually developed them after a need was recognized; and c) distributed cognition was rejected as an explanatory framework by arguing that the studied workers and their environment formed a system that was itself a heuristic on a grand scale.
ContributorsOrletsky, Darryl William (Author) / Middleton, James (Thesis advisor) / Greenes, Carole (Committee member) / Judson, Eugene (Committee member) / Arizona State University (Publisher)
Created2015
158115-Thumbnail Image.png
Description
The problem of practice addressed in this mixed methods action research study is the underachievement of fifth-grade students in mathematics. This study explores the effects of an innovation designed to help students develop a growth mindset by utilizing self-regulation strategies to improve academic growth in mathematics. Students’ underachievement in mathematics

The problem of practice addressed in this mixed methods action research study is the underachievement of fifth-grade students in mathematics. This study explores the effects of an innovation designed to help students develop a growth mindset by utilizing self-regulation strategies to improve academic growth in mathematics. Students’ underachievement in mathematics has been illustrated by both state and international assessments. Throughout the decades, mathematics instruction and reforms have varied, but overall students’ psychological needs have been neglected. This innovation was designed to develop students’ psychological characteristics regarding facing challenges in mathematics. For this purpose, two guiding theories were utilized to frame this research study, Dweck’s mindset theory and self-regulation theory. To address the research questions of this study, pre- and post-questionnaire data, observational data and student work was analyzed. Results of the qualitative data indicated that the innovation positively impacted students’ mindsets and use of self-regulation strategies. However, quantitative data indicated the innovation had no effect on students’ use of self-regulation strategies or academic growth, and a negative impact on students’ mindsets.
ContributorsManchester, Sarah (Author) / Judson, Eugene (Thesis advisor) / Moses, Lindsey (Committee member) / Ellis, Raquel (Committee member) / Arizona State University (Publisher)
Created2020