Matching Items (2)
Filtering by

Clear all filters

153334-Thumbnail Image.png
Description
Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound

Three dimensional (3-D) ultrasound is safe, inexpensive, and has been shown to drastically improve system ease-of-use, diagnostic efficiency, and patient throughput. However, its high computational complexity and resulting high power consumption has precluded its use in hand-held applications.

In this dissertation, algorithm-architecture co-design techniques that aim to make hand-held 3-D ultrasound a reality are presented. First, image enhancement methods to improve signal-to-noise ratio (SNR) are proposed. These include virtual source firing techniques and a low overhead digital front-end architecture using orthogonal chirps and orthogonal Golay codes.

Second, algorithm-architecture co-design techniques to reduce the power consumption of 3-D SAU imaging systems is presented. These include (i) a subaperture multiplexing strategy and the corresponding apodization method to alleviate the signal bandwidth bottleneck, and (ii) a highly efficient iterative delay calculation method to eliminate complex operations such as multiplications, divisions and square-root in delay calculation during beamforming. These techniques were used to define Sonic Millip3De, a 3-D die stacked architecture for digital beamforming in SAU systems. Sonic Millip3De produces 3-D high resolution images at 2 frames per second with system power consumption of 15W in 45nm technology.

Third, a new beamforming method based on separable delay decomposition is proposed to reduce the computational complexity of the beamforming unit in an SAU system. The method is based on minimizing the root-mean-square error (RMSE) due to delay decomposition. It reduces the beamforming complexity of a SAU system by 19x while providing high image fidelity that is comparable to non-separable beamforming. The resulting modified Sonic Millip3De architecture supports a frame rate of 32 volumes per second while maintaining power consumption of 15W in 45nm technology.

Next a 3-D plane-wave imaging system that utilizes both separable beamforming and coherent compounding is presented. The resulting system has computational complexity comparable to that of a non-separable non-compounding baseline system while significantly improving contrast-to-noise ratio and SNR. The modified Sonic Millip3De architecture is now capable of generating high resolution images at 1000 volumes per second with 9-fire-angle compounding.
ContributorsYang, Ming (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Karam, Lina (Committee member) / Frakes, David (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
157804-Thumbnail Image.png
Description
While machine/deep learning algorithms have been successfully used in many practical applications including object detection and image/video classification, accurate, fast, and low-power hardware implementations of such algorithms are still a challenging task, especially for mobile systems such as Internet of Things, autonomous vehicles, and smart drones.

This work presents an energy-efficient

While machine/deep learning algorithms have been successfully used in many practical applications including object detection and image/video classification, accurate, fast, and low-power hardware implementations of such algorithms are still a challenging task, especially for mobile systems such as Internet of Things, autonomous vehicles, and smart drones.

This work presents an energy-efficient programmable application-specific integrated circuit (ASIC) accelerator for object detection. The proposed ASIC supports multi-class (face/traffic sign/car license plate/pedestrian), many-object (up to 50) in one image with different sizes (6 down-/11 up-scaling), and high accuracy (87% for face detection datasets). The proposed accelerator is composed of an integral channel detector with 2,000 classifiers for five rigid boosted templates to make a strong object detection. By jointly optimizing the algorithm and efficient hardware architecture, the prototype chip implemented in 65nm demonstrates real-time object detection of 20-50 frames/s with 22.5-181.7mW (0.54-1.75nJ/pixel) at 0.58-1.1V supply.



In this work, to reduce computation without accuracy degradation, an energy-efficient deep convolutional neural network (DCNN) accelerator is proposed based on a novel conditional computing scheme and integrates convolution with subsequent max-pooling operations. This way, the total number of bit-wise convolutions could be reduced by ~2x, without affecting the output feature values. This work also has been developing an optimized dataflow that exploits sparsity, maximizes data re-use and minimizes off-chip memory access, which can improve upon existing hardware works. The total off-chip memory access can be saved by 2.12x. Preliminary results of the proposed DCNN accelerator achieved a peak 7.35 TOPS/W for VGG-16 by post-layout simulation results in 40nm.

A number of recent efforts have attempted to design custom inference engine based on various approaches, including the systolic architecture, near memory processing, and in-meomry computing concept. This work evaluates a comprehensive comparison of these various approaches in a unified framework. This work also presents the proposed energy-efficient in-memory computing accelerator for deep neural networks (DNNs) by integrating many instances of in-memory computing macros with an ensemble of peripheral digital circuits, which supports configurable multibit activations and large-scale DNNs seamlessly while substantially improving the chip-level energy-efficiency. Proposed accelerator is fully designed in 65nm, demonstrating ultralow energy consumption for DNNs.
ContributorsKim, Minkyu (Author) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu Kevin (Committee member) / Vrudhula, Sarma (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2019