Matching Items (2)
Filtering by

Clear all filters

153320-Thumbnail Image.png
Description
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of

This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f(R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
ContributorsChatterjee, Saugata (Author) / Parikh, Maulik K (Thesis advisor) / Easson, Damien (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2014
190707-Thumbnail Image.png
Description
Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even

Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even with human intelligence, complex systems present a unique challenge in discerning the laws that govern them. Even the preliminary step, system description, poses a substantial challenge. Numerous metrics have been developed, but universally applicable laws remain elusive. Due to the cognitive limitations of human comprehension, a direct understanding of big data derived from complex systems is impractical. Therefore, simplification becomes essential for identifying hidden regularities, enabling scientists to abstract observations or draw connections with existing knowledge. As a result, the concept of macrostates -- simplified, lower-dimensional representations of high-dimensional systems -- proves to be indispensable. Macrostates serve a role beyond simplification. They are integral in deciphering reusable laws for complex systems. In physics, macrostates form the foundation for constructing laws and provide building blocks for studying relationships between quantities, rather than pursuing case-by-case analysis. Therefore, the concept of macrostates facilitates the discovery of regularities across various systems. Recognizing the importance of macrostates, I propose the relational macrostate theory and a machine learning framework, MacroNet, to identify macrostates and design microstates. The relational macrostate theory defines a macrostate based on the relationships between observations, enabling the abstraction from microscopic details. In MacroNet, I propose an architecture to encode microstates into macrostates, allowing for the sampling of microstates associated with a specific macrostate. My experiments on simulated systems demonstrate the effectiveness of this theory and method in identifying macrostates such as energy. Furthermore, I apply this theory and method to a complex chemical system, analyzing oil droplets with intricate movement patterns in a Petri dish, to answer the question, ``which combinations of parameters control which behavior?'' The macrostate theory allows me to identify a two-dimensional macrostate, establish a mapping between the chemical compound and the macrostate, and decipher the relationship between oil droplet patterns and the macrostate.
ContributorsZhang, Yanbo (Author) / Walker, Sara I (Thesis advisor) / Anbar, Ariel (Committee member) / Daniels, Bryan (Committee member) / Das, Jnaneshwar (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2023