Matching Items (2)
Filtering by

Clear all filters

154836-Thumbnail Image.png
Description
Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is

Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is well-known for its substrate promiscuity. It has the ability to efflux a broad spectrum of substrates alongside compounds such as dyes, detergent, bile salts and metabolites. Newly identified AcrB residues were shown to be functionally relevant in the drug binding and translocation pathway using a positive genetic selection strategy. These residues—Y49, V127, D153, G288, F453, and L486—were identified as the sites of suppressors of an alteration, F610A, that confers a drug hypersensitivity phenotype. Using site-directed mutagenesis (SDM) along with the real-time efflux and the classical minimum inhibitory concentration (MIC) assays, I was able to characterize the mechanism of suppression.

Three approaches were used for the characterization of these suppressors. The first approach focused on side chain specificity. The results showed that certain suppressor sites prefer a particular side chain property, such as size, to overcome the F610A defect. The second approach focused on the effects of efflux pump inhibitors. The results showed that though the suppressor residues were able to overcome the intrinsic defect of F610A, they were unable to overcome the extrinsic defect caused by the efflux pump inhibitors. This showed that the mechanism by which F610A imposes its effect on AcrB function is different than that of the efflux pump inhibitors. The final approach was to determine whether suppressors mapping in the periplasmic and trans-membrane domains act by the same or different mechanisms. The results showed both overlapping and distinct mechanisms of suppression.

To conclude, these approaches have provided a deeper understanding of the mechanisms by which novel suppressor residues of AcrB overcome the functional defect of the drug binding domain alteration, F610A.
ContributorsBlake, Mellecha (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
153238-Thumbnail Image.png
Description
The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms chronically infecting the airways of CF patients, typically localize in hypoxic regions of the mucus. While interspecies interactions between P.

The viscous lung mucus of cystic fibrosis (CF) patients is characterized by oxygen gradients, which creates a unique niche for bacterial growth. Pseudomonas aeruginosa and Staphylococcus aureus, two predominant microorganisms chronically infecting the airways of CF patients, typically localize in hypoxic regions of the mucus. While interspecies interactions between P. aeruginosa and S. aureus have been reported, little is known about the role of low oxygen in regulating these interactions. Studying interspecies interactions in CF lung disease is important as evidence suggests that microbial community composition governs disease progression. In this study, P. aeruginosa lab strain PAO1 and two primary clinical isolates from hypoxic tissues were cultured alone, or in combination, with methicillin resistant S. aureus (MRSA) strain N315 under hypoxic or normoxic conditions. Herein, it is shown for the first time that low oxygen conditions relevant to the CF lung affect the competitive behavior between P. aeruginosa and S. aureus. Specifically, S. aureus was able to better survive competition in hypoxic versus normoxic conditions. Competition data from different oxygen concentrations were consistent using PAO1 and clinical isolates even though differences in the level of competition were observed. PAO1 strains carrying mutations in virulence factors known to contribute to S. aureus competition (pyocyanin/phzS, elastase/lasA and lasI quorum sensing/lasI) were used to determine which genes play a role in the differential growth inhibition. The lasA and lasI mutants competed less effectively with S. aureus regardless of the oxygen level present in the culture compared to the isogenic wild type strain. These results are consistent with previous findings that elastase and lasI quorum sensing play a role in competitive behavior of P. aeruginosa and S. aureus. Interestingly, the phzS mutant competed less effectively in hypoxic conditions suggesting that pyocyanin may be important in microaerophilic conditions. This study demonstrates that oxygen plays a role in competition between P. aeruginosa and S. aureus and contributes to understanding CF environmental factors that may regulate microbial community dynamics important for disease progression with potential for development of therapeutic avenues.
ContributorsLedesma Barrera, Maria Alexandra (Author) / Nickerson, Cheryl A. (Thesis advisor) / Reyes del Valle, Jorge (Committee member) / Clark-Curtiss, Josephine (Committee member) / Stout, Valerie (Committee member) / Ott, C M (Committee member) / Arizona State University (Publisher)
Created2014