Matching Items (4)
Filtering by

Clear all filters

190808-Thumbnail Image.png
Description
Globally, land use change is the primary driver of biodiversity loss (IPBES, 2019). Land use change due to agricultural expansion is driving bird species to the brink of extinction in the Peruvian Amazon rainforest. Agriculture is one of the primary threats to bird species in the region, and agroforestry is

Globally, land use change is the primary driver of biodiversity loss (IPBES, 2019). Land use change due to agricultural expansion is driving bird species to the brink of extinction in the Peruvian Amazon rainforest. Agriculture is one of the primary threats to bird species in the region, and agroforestry is being pursued in some communities as a potential solution to reduce agriculture's impacts on species, as agroforestry provides improved habitat for wildlife while also enabling livelihoods for people. Understanding how anthropogenic land use choices affect imperiled species is an important prerequisite for conservation policy and practice in the region. In this thesis, I develop a spatial model for quantifying expected threat abatement from shifting agricultural land use choices towards agroforestry. I used this model explored how agricultural land use impacts imperiled bird species in the Peruvian Amazon. My approach builds on the species threat abatement and restoration (STAR) metric to make the expected consequences of reducing agricultural threats spatially explicit. I then analyzed results of applying the metric to alternative scenarios with and without agroforestry conversion. I found that agroforestry could result in up to 18.68% reduction in mean bird projected population decline. I found that converting all terrestrial agriculture in the Peruvian Amazon to agroforestry could produce a benefit of up to 83% to imperiled birds in the region in terms of improvement in Red List status. This use of the STAR metric to model alternative scenarios presents a novel usage for the STAR metric and a promising approach to understand how to address terrestrial biodiversity challenges efficiently and effectively.
ContributorsPoe, Katherine (Author) / Iacona, Gwen (Thesis advisor) / Gerber, Leah (Thesis advisor) / Mair, Louise (Committee member) / Arizona State University (Publisher)
Created2023
172812-Thumbnail Image.png
Description

In the early twentieth century, scientists and agriculturalists collected plants in greenhouses, botanical gardens, and fields. Seed collection efforts in the twentieth century coincided with the professionalization of plant breeding. When scientists became concerned over the loss of plant genetic diversity due to the expansion of a few agricultural crops

In the early twentieth century, scientists and agriculturalists collected plants in greenhouses, botanical gardens, and fields. Seed collection efforts in the twentieth century coincided with the professionalization of plant breeding. When scientists became concerned over the loss of plant genetic diversity due to the expansion of a few agricultural crops around mid-century, countries and organizations created seed banks for long-term seed storage. Around 1979, environmental groups began to object to what they perceived as limited access to seed banks, and they questioned the ownership of the intellectual property of living organisms. Controversy also ensued over the uneven flow of genetic resources because many of the seed banks were located in the global North, yet plants were collected largely from countries in the global South. The environmental groups' campaigns, which some called the seed wars, and the movement for biodiversity conservation intersected in ways that shaped debates about plant genetic material and seed banking. Several significant shifts in governance occurred in 1994 that led to the creation of the International Plant Genetic Resources Institute in Italy, and to changes in the governance of several international seed banks.

Created2014-01-28
172761-Thumbnail Image.png
Description

Farmers have long relied on genetic diversity to breed new crops, but in the early 1900s scientists began to study the importance of plant genetic diversity for agriculture. Scientists realized that seed crops could be systematically bred with their wild relatives to incorporate specific genetic traits or to produce hybrids

Farmers have long relied on genetic diversity to breed new crops, but in the early 1900s scientists began to study the importance of plant genetic diversity for agriculture. Scientists realized that seed crops could be systematically bred with their wild relatives to incorporate specific genetic traits or to produce hybrids for more productive crop yields. The spread of hybrids led to less genetically diversity than normal plant populations, however, and by 1967, plant scientists led an international movement for conservation of plant genetic resources through the United Nations's Food and Agricultural Organization, and later through the Consultative Group for International Agricultural Research, both of which are headquartered in Europe. To conserve plant genetic resources, researchers must collect and store plant germplasm-the genetic material required to propagate a plant-usually in the form of a seed.

Created2013-11-01
157330-Thumbnail Image.png
Description
Development throughout the course of history has traditionally resulted in the demise of biodiversity. As humans strive to develop their daily livelihoods, it is often at the expense of nearby wildlife and the environment. Conservation non-governmental organizations (NGOs), among other actors in the global agenda, have blossomed in the past

Development throughout the course of history has traditionally resulted in the demise of biodiversity. As humans strive to develop their daily livelihoods, it is often at the expense of nearby wildlife and the environment. Conservation non-governmental organizations (NGOs), among other actors in the global agenda, have blossomed in the past century with the realization that there is an immediate need for conservation action. Unlike government agencies, conservation NGOs have an independent, potentially more objective outlook on procedures and policies that would benefit certain regions or certain species the most. They often have national and international government support, in addition to the credibility and influencing power to sway policy decisions and participate in international agendas. The key to their success lies in the ability to balance conservation efforts with socioeconomic development efforts. One cannot occur without the other, but they must work in coordination. This study looks at the example of African Great Apes. Eight ape-focused NGOs and three unique case studies will be examined in order to describe the impact that NGOs have. Most of these NGOs have been able to build the capacity from an initial conservation agenda, to incorporating socioeconomic factors that benefit the development of local communities in addition to the apes and habitat they set out to influence. This being the case, initiatives by conservation NGOs could be the key to a sustainable future in which humans and biodiversity coexist harmoniously.
ContributorsPrickett, Laura (Author) / Parmentier, Mary Jane (Thesis advisor) / Zachary, Gregg (Committee member) / Gerber, Leah (Committee member) / Arizona State University (Publisher)
Created2019