Matching Items (2)

Filtering by

Clear all filters

155202-Thumbnail Image.png

An extended finite element method for modelling dislocation interactions with inclusions

Description

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite

A method for modelling the interactions of dislocations with inclusions has been developed to analyse toughening mechanisms in alloys. This method is different from the superposition method in that infinite domain solutions and image stress fields are not superimposed. The method is based on the extended finite element method (XFEM) in which the dislocations are modelled according to the Volterra dislocation model. Interior discontinuities are introduced across dislocation glide planes using enrichment functions and the resulting boundary value problem is solved through the standard finite element variational approach. The level set method is used to describe the geometry of the dislocation glide planes without any explicit treatment of the interface geometry which provides a convenient and an appealing means for describing the dislocation. A method for estimating the Peach-Koehler force by the domain form of J-integral is considered. The convergence and accuracy of the method are studied for an edge dislocation interacting with a free surface where analytical solutions are available. The force converges to the exact solution at an optimal rate for linear finite elements. The applicability of the method to dislocation interactions with inclusions is illustrated with a system of Aluminium matrix containing Aluminium-copper precipitates. The effect of size, shape and orientation of the inclusions on an edge dislocation for a difference in stiffness and coefficient of thermal expansion of the inclusions and matrix is considered. The force on the dislocation due to a hard inclusion increased by 8% in approaching the sharp corners of a square inclusion than a circular inclusion of equal area. The dislocation experienced 24% more force in moving towards the edges of a square shaped inclusion than towards its centre. When the areas of the inclusions were halved, 30% less force was exerted on the dislocation. This method was used to analyse interfaces with mismatch strains. Introducing eigenstrains equal to 0.004 to the elastic mismatch increased the force by 15 times for a circular inclusion. The energy needed to move an edge dislocation through a domain filled with circular inclusions is 4% more than that needed for a domain with square shaped inclusions.

Contributors

Agent

Created

Date Created
  • 2016

153182-Thumbnail Image.png

Role of impurities on deformation of HCP crystal: a multiscale approach

Description

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However,

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.

Contributors

Agent

Created

Date Created
  • 2014