Matching Items (13)
156717-Thumbnail Image.png
Description
Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase

Electricity infrastructure vulnerabilities were assessed for future heat waves due to climate change. Critical processes and component relationships were identified and characterized with consideration for the terminal event of service outages, including cascading failures in transmission-level components that can result in blackouts. The most critical dependency identified was the increase in peak electricity demand with higher air temperatures. Historical and future air temperatures were characterized within and across Los Angeles County, California (LAC) and Maricopa County (Phoenix), Arizona. LAC was identified as more vulnerable to heat waves than Phoenix due to a wider distribution of historical temperatures. Two approaches were developed to estimate peak demand based on air temperatures, a top-down statistical model and bottom-up spatial building energy model. Both approaches yielded similar results, in that peak demand should increase sub-linearly at temperatures above 40°C (104 °F) due to saturation in the coincidence of air conditioning (AC) duty cycles. Spatial projections for peak demand were developed for LAC to 2060 considering potential changes in population, building type, building efficiency, AC penetration, appliance efficiency, and air temperatures due climate change. These projections were spatially allocated to delivery system components (generation, transmission lines, and substations) to consider their vulnerability in terms of thermal de-rated capacity and weather adjusted load factor (load divided by capacity). Peak hour electricity demand was projected to increase in residential and commercial sectors by 0.2–6.5 GW (2–51%) by 2060. All grid components, except those near Santa Monica Beach, were projected to experience 2–20% capacity loss due to air temperatures exceeding 40 °C (104 °F). Based on scenario projections, and substation load factors for Southern California Edison (SCE), SCE will require 848—6,724 MW (4-32%) of additional substation capacity or peak shaving in its LAC service territories by 2060 to meet additional demand associated with population growth projections.
ContributorsBurillo, Daniel (Author) / Chester, Mikhail V (Thesis advisor) / Ruddell, Benjamin (Committee member) / Johnson, Nathan (Committee member) / Arizona State University (Publisher)
Created2018
135368-Thumbnail Image.png
Description
In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these

In developed countries, municipalities deliver drinking water to constituents through water distribution systems. These transport water from a treatment plant to homes, restaurants, and any other site of end use. Proper water distribution system infrastructure functionality is a critical concern to city planners and managers because component failures within these systems restrict or prevent the ability to deliver water. The reduced capacity to deliver water forces the health and well being of all citizens into jeopardy. The breakdown of a component can even spark the failure of several more components, causing a sequence of cascading failures with catastrophic consequences. To make matters worse, some forms of component failures are unpredictable and it is impossible to foresee every possible failure that could occur. In order to prevent cataclysmic losses that are experienced during system failures, the development of resilient water distribution infrastructure is vital. A resilient water distribution system possesses an adaptive capacity to mitigate the loss of service resulting from component failures. Traditionally, infrastructure resilience research has been retrospective in nature, analyzing the infrastructure system after it suffered a failure event. However, this research project takes water distribution resilience research in a new direction. The research identifies the Sensing Anticipating, Adaptation, and Learning processes that are inherent in the current operations of each component in the water distribution system (pumps, pipes, valves, tanks, nodes). Additional SAAL processes have been recommended for the components that lack adaptive management in current practice. This workis unique in that it applies resilience theory to water distribution systems in an anticipatory manner. This anticipatory application of resilience will provide operators with actionable process for them to implement during failure situations. In this setting, resilience is applied to existing systems for noticeable improvements in operation during failure situations.
ContributorsRodriguez, Jordan Robert (Author) / Seager, Thomas (Thesis director) / Eisenberg, Daniel (Committee member) / Bondank, Emily (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
154149-Thumbnail Image.png
Description
In the burgeoning field of sustainability, there is a pressing need for healthcare to understand the increased environmental and economic impact of healthcare products and services. The overall aim of this dissertation is to assess the sustainability of commonly used medical products, devices, and services as well as to identify

In the burgeoning field of sustainability, there is a pressing need for healthcare to understand the increased environmental and economic impact of healthcare products and services. The overall aim of this dissertation is to assess the sustainability of commonly used medical products, devices, and services as well as to identify strategies for making easy, low cost changes that result in environmental and economic savings for healthcare systems. Life cycle environmental assessments (LCAs) and life cycle costing assessments (LCCAs) will be used to quantitatively evaluate life-cycle scenarios for commonly utilized products, devices, and services. This dissertation will focus on several strategic and high impact areas that have potential for significant life-cycle environmental and economic improvements: 1) increased deployment of reprocessed medical devices in favor of disposable medical devices, 2) innovations to expand the use of biopolymers in healthcare materials and devices, and 3) assess the environmental and economic impacts of various medical devices and services in order to give healthcare administrators and employees the ability to make more informed decisions about the sustainability of their utilized materials, devices, and services.
ContributorsUnger, Scott (Author) / Landis, Amy E. (Thesis advisor) / Bilec, Melissa (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
151583-Thumbnail Image.png
Description
Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed.

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables. The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur's packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.
ContributorsUnger, Scott (Author) / Landis, Amy (Thesis advisor) / Wilson, Natalia (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2013
Description

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed.

Healthcare infection control has led to increased utilization of disposable medical devices, which has subsequently led to increased adverse environmental effects attributed to healthcare and its supply chain. In dental practice, the dental bur is a commonly used instrument that can either be reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. The comparative LCA evaluated a reusable dental bur (specifically, a 2.00mm Internal Irrigation Pilot Drill) reused 30 instances versus 30 identical burs used as disposables.

The LCA methodology was performed using framework described by the International Organization for Standardization (ISO) 14040 series. Sensitivity analyses were performed with respect to ultrasonic and autoclave loading. Findings from this research showed that when the ultrasonic and autoclave are loaded optimally, reusable burs had 40% less of an environmental impact than burs used on a disposable basis. When the ultrasonic and autoclave were loaded to 66% capacity, there was an environmental breakeven point between disposable and reusable burs. Eutrophication, carcinogenic impacts, non-carcinogenic impacts, and acidification were limited when cleaning equipment (i.e., ultrasonic and autoclave) were optimally loaded. Additionally, the bur’s packaging materials contributed more negative environmental impacts than the production and use of the bur itself. Therefore, less materially-intensive packaging should be used. Specifically, the glass fiber reinforced plastic casing should be substituted for a material with a reduced environmental footprint.

Created2013-05
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)
Description

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is

This report is the consolidated work of an interdisciplinary course project in CEE494/598, CON598, and SOS598, Urban Infrastructure Anatomy and Sustainable Development. In Fall 2012, the course at Arizona State University used sustainability research frameworks and life-cycle assessment methods to evaluate the comprehensive benefits and costs when transit-oriented development is infilled along the proposed light rail transit line expansion. In each case, and in every variation of possible future scenarios, there were distinct life-cycle benefits from both developing in more dense urban structures and reducing automobile travel in the process.

Results from the report are superseded by our publication in Environmental Science and Technology.

Created2012-12
Description

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban

Recent developments in computational software and public accessibility of gridded climatological data have enabled researchers to study Urban Heat Island (UHI) effects more systematically and at a higher spatial resolution. Previous studies have analyzed UHI and identified significant contributors at the regional level for cities, within the topology of urban canyons, and for different construction materials.

In UHIs, air is heated by the convective energy transfer from land surface materials and anthropogenic activities. Convection is dependent upon the temperature of the surface, temperature of the air, wind speed, and relative humidity. At the same time, air temperature is also influenced by greenhouse gases (GHG) in the atmosphere. Climatologists project a 1-5°C increase in near-surface air temperature over the next several decades, and 1-4°C specifically for Los Angeles and Maricopa during summertime due to GHG effects. With higher ambient air temperatures, we seek to understand how convection will change in cities and to what ends.

In this paper we develop a spatially explicit methodology for quantifying UHI by estimating the daily convection thermal energy transfer from land to air using publicly-available gridded climatological data, and we estimate how much additional energy will be retained due to lack of convective cooling in scenarios of higher ambient air temperature.

Description

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
   

Global climate models predict increases in precipitation events in the Phoenix-metropolitan area and with the proposition of more flooding new insights are needed for protecting roadways and the services they provide. Students from engineering, sustainability, and planning worked together in ASU’s Urban Infrastructure Anatomy Spring 2016 course to assess:
       1. How historical floods changed roadway designs.
       2. Precipitation forecasts to mid-century.
       3. The vulnerability of roadways to more frequent precipitation.
       4. Adaptation strategies focusing on safe-to-fail thinking.
       5. Strategies for overcoming institutional barriers to enable transitions.
The students designed an EPA Storm Water Management Model for the City of Phoenix and forced it with future precipitation forecasts. Vulnerability indexes were created for infrastructure performance and social outcomes. A multi-criteria decision analysis framework was created to prioritize infrastructure adaptation strategies.

Description

This paper applies LCA methodology using local variables to assess the environmental impacts of the food grade glass containers that are disposed of on Arizona State University’s Tempe campus throughout their two distinct end-of-life scenarios: glass to be recycled or glass to be sent to the landfill as refuse.

Created2013-05