Matching Items (106)
136943-Thumbnail Image.png
Description
Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested,

Cerebral aneurysms, also known as intracranial aneurysms, are sac-like lesions in the arteries of the brain that can rupture to cause subarachnoid hemorrhaging, damaging and killing brain cells. Metal coil embolization has been traditionally used to occlude and treat cerebral aneurysms to limited success, but polymer embolization has been suggested, because it can provide a greater fraction of occlusion. One such polymer with low cytotoxicity is poly(propylene glycol)diacrylate (PPODA) crosslinked via Michael-type addition with pentaerythritol tetrakis(3-mercaptopropionate) (QT). This study was performed to examine the behavior of PPODA-QT gel in vitro under pulsatile flow emulating physiological conditions. An idealized cerebral aneurysm flow model was designed based on geometries associated with an increase in rupture risk. Pressure was monitored at the apex of the aneurysm dome for varied flow rates and polymer filling fractions of 32.4, 78.2, and 100%. The results indicate that the amount of PPODA-QT deployed into the aneurysm decreases the peak-to-peak oscillation in pressure at the aneurysm wall by an inverse proportion. The 32.4 and 78.2% treatments did not significantly decrease the mean pressure applied to the aneurysm dome, but the 100% treatment greatly reduced it by diverting flow. This study indicates that the maximum filling fraction after swelling of PPODA-QT polymer should be deployed into the aneurysmal sac for treatment.
ContributorsWorkman, Christopher David (Author) / Vernon, Brent (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137061-Thumbnail Image.png
Description
I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic

I tested the hypothesis that in mature colonies of the seed harvester Pogonomyrmex californicus ant species, paired pleometrotic queens would produce workers more efficiently after a massive removal of their work force than haplometrotic queens, paired pleometrotic with haplometrotic queens, and single pleometrotic queens. I suggested that the paired pleometrotic queens would have an advantage of cooperating together in reproducing more workers quicker than the other conditions to make up for the lost workers. This would demonstrate a benefit that pleometrosis has over haplometrosis for mature colonies, which would explain why pleometrosis continues for P.californicus after colony foundation. After removing all but twenty workers for every colony, I took pictures and counted the emerging brood for 52 days. Analyses showed that the paired pleometrotic queens and the haplometrotic queens both grew at an equally efficient rate and the paired pleometrotic and haplometrotic queens growing the least efficiently. However, the results were not significant and did not support the hypothesis that paired pleometrotic queens recover from worker loss more proficiently than other social systems.
ContributorsFernandez, Marisa Raquel (Author) / Fewell, Jennifer (Thesis director) / Gadau, Juergen (Committee member) / Haney, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Psychology (Contributor)
Created2014-05
137680-Thumbnail Image.png
Description
Intracranial aneurysms, which form in the blood vessels of the brain, are particularly dangerous because of the importance and fragility of the human brain. When an intracranial aneurysm gets large it poses a significant risk of bursting and causing subarachnoid hemorrhaging (SAH), a possibly fatal condition. One possible treatment involves

Intracranial aneurysms, which form in the blood vessels of the brain, are particularly dangerous because of the importance and fragility of the human brain. When an intracranial aneurysm gets large it poses a significant risk of bursting and causing subarachnoid hemorrhaging (SAH), a possibly fatal condition. One possible treatment involves placing a stent in the vessel to act as a flow diverter. In this study we look at the hemodynamics of two geometries of idealized basilar tip aneurysms, at 2,3, and 4 ml/s pulsatile flow, at three different points in the cardiac cycle. The smaller model had neck and dome diameters of 2.67 mm and 4 mm respectively, while the larger aneurysm had neck and dome diameters of 3 mm and 6 mm respectively. Both diameters and the dome to neck ratio increased in the second model, representing growth over time. Flow was analyzed using stereoscopic particle image velocimetry (PIV) for both geometries in untreated models, as well as after treatment with a high porosity Enterprise stent (Codman and Shurtleff Inc.). Flow in the models was characterized by root mean square velocity in the aneurysm and neck plane, cross neck flow, max aneurysm vorticity, and total aneurysm kinetic energy. It was found that in the smaller aneurysm model (model 1), Enterprise stent treatment reduced all flow parameters substantially. The smallest reduction was in max vorticity, at 42.48%, and the largest in total kinetic energy, at 75.69%. In the larger model (model 2) there was a 52.18% reduction in cross neck flow, but a 167.28% increase in aneurysm vorticity. The other three parameters experienced little change. These results, along with observed velocity vector fields, indicate a noticeable diversion of flow away from the aneurysm in the stent treated model 1. Treatment in model 2 had a small flow diversion effect, but also altered flow in unpredictable ways, in some cases having a detrimental effect on aneurysm hemodynamics. The results of this study indicate that Enterprise stent treatment is only effective in small, relatively undeveloped aneurysm geometries, and waiting until an aneurysm has grown too large can eliminate this treatment option altogether.
ContributorsLindsay, James Bryan (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Committee member) / Nair, Priya (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2013-05
137782-Thumbnail Image.png
Description
Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability

Development of a rapid and label-free Electrochemical Impedance Spectroscopy (EIS) biosensor for Cardiovascular Disease (CVD) detection based on Inerluekin-18 (IL-18) sensitivity was proposed to fill the technology gap between rapid and portable CVD point-of-care diagnosis. IL-18 was chosen for this CVD biosensor due to its ability to detect plaque vulnerability of the heart. Custom (hand) made sensors, which utilized a three electrode configuration with a gold disk working electrode, were created to run EIS using both IL-18 and anti-IL-18 molecules in both purified and blood solutions. The EIS results for IL-18 indicated the optimal detection frequency to be 371Hz. Blood interaction on the working electrode increased the dynamic range of impedance values for the biosensor. Future work includes Developing and testing prototypes of the biosensor along with determining if a Nafion based coating on the working electrode will reduce the dynamic range of impedance values caused by blood interference.
ContributorsJha, Amit (Author) / LaBelle, Jeffrey (Thesis director) / Mossman, Kenneth (Committee member) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Management (Contributor)
Created2013-05
137749-Thumbnail Image.png
Description
In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal

In 1937 Canadian neurosurgeon Wilder Penfield made the first to attempt to map the sensorimotor cortex of the human brain in his paper entitled Somatic Motor and Sensory Representation in the Cerebral Cortex of Man as Studied by Electrical Stimulation. While analogous experimentation had been carried out previously using animal subjects, Penfield sought to understand the delicate and complex neuronal pathways that served as the hidden control mechanisms for human activity. The motor homunculus that followed from his findings has been widely accepted as the standard model for the relative spatial representation of the functionality of the motor cortex, and has been virtually unaltered since its inception. While Penfield took measures to collect cortical data in a manner as accurately as scientifically possible for the time period, his original model is deserving of further analysis using modern techniques. This study uses functional magnetic resonance imaging (fMRI) to quantitatively determine motor function volumes and spatial relationships for four motor tasks: toe, finger, eyebrow, and tongue. Although Penfield's general representation of the superior-to-inferior spatial distribution of the motor cortex was replicated with reasonable accuracy, relative mean task volumes seem to differ from Penfield's original model. The data was first analyzed in each individual patient's native anatomical space for task comparison within a single subject. The volumes of the motor cortex devoted to the eyebrow and toe tasks, which comprise only small portions of the Penfield homunculus, are shown to be relatively large in their fMRI representation compared to finger and tongue. However, these tasks have large deviation values, indicating a lack of consistency in task volume size among patients. Behaviorally, toe movement may include whole foot movement in some individuals, and eyebrows may include face movement, causing distributions that are more widespread. The data was then analyzed in the Montreal Neurological Institute (MNI) space, which is mathematically normalized for task comparison between different subjects. Tongue and finger tasks were the largest in volume, much like Penfield's model. However, they also had substantial deviation, again indicating task volume size inconsistencies. Since the Penfield model is only a qualitative spatial evaluation of motor function along the precentral gyrus, numerical deviation from the model cannot necessarily be quantified. Hence, the results of this study can be interpreted standalone without a current comparison. While future research will serve to further validate these distances and volumes, this quantitative model of the functionality of the motor cortex will be of great utility for future neurological research and during preoperative evaluations of neurosurgical patients.
ContributorsOland, Gabriel Lee (Author) / Frakes, David (Thesis director) / Santello, Marco (Committee member) / Baxter, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137283-Thumbnail Image.png
Description
Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic

Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic patient monitoring system with software to track patient movement in order to increase a patient's mobility. This report discusses the impact of an automatic patient monitoring system and the design steps used to create and test a functional prototype.
ContributorsBui, Robert Truong (Author) / Frakes, David (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
137292-Thumbnail Image.png
Description
Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction

Wolbachia is a genus of obligately intracellular bacterial endosymbionts of arthropods and nematodes, infecting up to 66% of all such species. In order to ensure its transmission, it may modify host reproduction by inducing one of four phenotypes: cytoplasmic incompatibility, feminization of genetic males, killing of male embryos, and induction of thelytokous parthenogenesis. This investigation was a characterization of the so-far unexamined Wolbachia infection of Pogonomyrmex ants. Five main questions were addressed: whether Wolbachia infection rates vary between North and South America, whether infection rates are dependent on host range, whether Wolbachia affects the caste determination of P. barbatus, whether infection rates in Pogonomyrmex are similar to those of other ants, and whether Wolbachia phylogeny parallels the phylogeny of its Pogonomyrmex hosts. Using PCR amplification of the wsp, ftsZ, and gatB loci, Wolbachia infections were detected in four of fifteen Pogonomyrmex species (26.7%), providing the first known evidence of Wolbachia infection in this genus. All infected species were from South America, specifically Argentina. Therefore, Wolbachia has no role in the caste determination of the North American species P. barbatus. Additionally, while it appears that the incidence of Wolbachia in Pogonomyrmex may be limited to South America, host range did not correlate with infection status. The incidence of Wolbachia in Pogonomyrmex as a whole was similar to that of invasive Solenopsis and Linepithema species, but not to Wasmannia auropunctata or Anoplolepis gracilipes, which retain Wolbachia infection in non-native locations. This suggests that there may be a parallel in Wolbachia infection spread in certain short-term models of species colonization and long-term models of genus radiation. Finally, there was no congruity between host and parasite phylogeny according to maximum likelihood analyses, necessarily due to horizontal transfer of Wolbachia between hosts and lateral gene transfer between Wolbachia strains within hosts.
ContributorsHarris, Alexandre Marm (Author) / Gadau, Juergen (Thesis director) / Martin, Thomas (Committee member) / Helmkampf, Martin Erik (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2014-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
136347-Thumbnail Image.png
Description
The ability of cochlear implants (CI) to restore auditory function has advanced significantly in the past decade. Approximately 96,000 people in the United States benefit from these devices, which by the generation and transmission of electrical impulses, enable the brain to perceive sound. But due to the predominantly Western cochlear

The ability of cochlear implants (CI) to restore auditory function has advanced significantly in the past decade. Approximately 96,000 people in the United States benefit from these devices, which by the generation and transmission of electrical impulses, enable the brain to perceive sound. But due to the predominantly Western cochlear implant market, current CI characterization primarily focuses on improving the quality of American English. Only recently has research begun to evaluate CI performance using other languages such as Mandarin Chinese, which rely on distinct spectral characteristics not present in English. Mandarin, a tonal language utilizes four, distinct pitch patterns, which when voiced a syllable, conveys different meanings for the same word. This presents a challenge to hearing research as spectral, or frequency based information like pitch is readily acknowledged to be significantly reduced by CI processing algorithms. Thus the present study sought to identify the intelligibility differences for English and Mandarin when processed using current CI strategies. The objective of the study was to pinpoint any notable discrepancies in speech recognition, using voice-coded (vocoded) audio that simulates a CI generated stimuli. This approach allowed 12 normal hearing English speakers, and 9 normal hearing Mandarin listeners to participate in the experiment. The number of frequency channels available and the carrier type of excitation were varied in order to compare their effects on two cases of Mandarin intelligibility: Case 1) word recognition and Case 2) combined word and tone recognition. The results indicated a statistically significant difference between English and Mandarin intelligibility for Condition 1 (8Ch-Sinewave Carrier, p=0.022) given Case 1 and Condition 1 (8Ch-Sinewave Carrier, p=0.001) and Condition 3 (16Ch-Sinewave Carrier, p=0.001) given Case 2. The data suggests that the nature of the carrier type does have an effect on tonal language intelligibility and warrants further research as a design consideration for future cochlear implants.
ContributorsSchiltz, Jessica Hammitt (Author) / Berisha, Visar (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05