Matching Items (121)
134936-Thumbnail Image.png
Description
It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been seen to carry into adulthood, helping to combat a host of chronic diseases, such as obesity and diabetes. However, in

It is well established that physical activity (PA) directly correlates with many health benefits, especially when active habits are formed during childhood and adolescence. PA practiced in adolescence has been seen to carry into adulthood, helping to combat a host of chronic diseases, such as obesity and diabetes. However, in recent years there has been a steady decline in PA among adolescents, followed by a resulting rise in sedentary behavior. Walking Intervention Through Texting for Adolescents, or WalkIT-A, was an 11.5-week intervention that built upon behavioral theory to provide an incentive-based, adaptive, physical activity intervention to inactive adolescents. The goal of this study was to investigate an intervention which combined walking with pointed behavior change strategies to incite a larger increase in PA. Using single-case, reversal (ABA) design, the study was aimed at shaping physical activity behavior in adolescents aged 12-17 through a mobile health intervention that paired adaptive goal setting with financial incentives to increase step count. The intervention was delivered using a semi-automated texting, mobile-Health (mHealth) platform, which incorporated FitBit tracking technology, adaptive goals, motivational messages, performance feedback, and points/incentives. It was hypothesized that during the adaptive intervention phase participants would increase both steps per day and active minutes compared to baseline values. Upon conclusion of the study, the three adolescent participants exhibited increased steps and active minutes during the intervention period compared to baseline and withdrawal phases. However, the specific trends identified suggest the need for future research to incorporate even stronger intervention components to overcome PA "drop-off" midway through the intervention, along with other external, environmental influencers. Despite this need, the use of adaptive goal setting combined with incentives can be an effective means to incite PA behavior change in adolescents.
ContributorsVan Bussum, Courtney Jessica (Author) / Adams, Marc (Thesis director) / Forzani, Erica (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2016-12
135435-Thumbnail Image.png
Description
In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial

In this project, biochemical characteristics of peptide binding agents, synthetic antibodies or synbodies, were examined with respect to the capture efficiency and specific binding ability to norovirus. Norovirus, although generally not a deadly pathogen, is the most common cause of acute gastroenteritis and outbreaks present a large social and financial burden to the healthcare and food service industries. With Dr. Diehnelt's laboratory group, a platform has been developed that enables us to rapidly construct peptide-based affinity ligands that can be characterized for binding to norovirus. The design needed to display clear results, be simple to operate, and be inexpensive to produce and use. Four synbodies, originally engineered with a specificity to the GII.4 Minerva genotype were tested with different virus strains varying in similarity to the GII.4 Minerva between 43% and 95.4%. Initial assays utilized norovirus-like particles to qualitatively compare the capture efficiency of the different synbodies without utilizing limited resources. To quantify the amount of actual virus captured by the synbodies, western blots with RT-PCR and RT-qPCR were utilized. The results indicated the synbodies were able to enrich the dilute solutions of the different noroviruses utilizing a magnetic bead pull-down assay. The capture efficiencies of the synbodies were comparable to currently utilized binding agents such as aptamers and porcine gastric mucine magnetic beads. This thesis presents data collected over nearly two years of research at the Center for Innovations in Medicine at the Biodesign Institute located at Arizona State University.
ContributorsSlosky, Rachael Marie (Author) / Diehnelt, Chris (Thesis director) / Stafford, Phillip (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
157716-Thumbnail Image.png
Description
Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in

Membrane based technology is one of the principal methods currently in widespread use to address the global water shortage. Pervaporation desalination is a membrane technology for water purification currently under investigation as a method for processing reverse osmosis concentrates or for stand-alone applications. Concentration polarization is a potential problem in any membrane separation. In desalination concentration polarization can lead to reduced water flux, increased propensity for membrane scaling, and decreased quality of the product water. Quantifying concentration polarization is important because reducing concentration polarization requires increased capital and operating costs in the form of feed spacers and high feed flow velocities. The prevalent methods for quantifying concentration polarization are based on the steady state thin film boundary layer theory. Baker’s method, previously used for pervaporation volatile organic compound separations but not desalination, was successfully applied to data from five previously published pervaporation desalination studies. Further investigation suggests that Baker’s method may not have wide applicability in desalination. Instead, the limitations of the steady state assumption were exposed. Additionally, preliminary results of nanophotonic enhancement of pervaporation membranes were found to produce significant flux enhancement. A novel theory on the mitigation of concentration polarization by the photothermal effect was discussed.
ContributorsMann, Stewart, Ph.D (Author) / Lind, Mary Laura (Thesis advisor) / Walker, Shane (Committee member) / Green, Matthew (Committee member) / Forzani, Erica (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2019
190969-Thumbnail Image.png
Description
Obesity has consistently presented a significant challenge, with excess body fat contributing to the development of numerous severe conditions such as diabetes, cardiovascular disease, cancer, and various musculoskeletal disorders. In this study, different methods are proposed to study substrate utilization (carbohydrates, proteins, and fats) in the human body and validate

Obesity has consistently presented a significant challenge, with excess body fat contributing to the development of numerous severe conditions such as diabetes, cardiovascular disease, cancer, and various musculoskeletal disorders. In this study, different methods are proposed to study substrate utilization (carbohydrates, proteins, and fats) in the human body and validate the biomarkers enabling to investigation of weight management and monitor metabolic health. The first technique to study was Indirect calorimetry, which assessed Resting Energy Expenditure (REE) and measured parameters like oxygen consumption (VO2) and carbon dioxide production (VCO2). A validation study was conducted to study the effectiveness of the medical device Breezing Med determining REE, VO2, and VCO2. The results were compared with correlation slopes and regression coefficients close to 1. Indirect Calorimetry can be used to determine carbohydrate and fat utilization but it requires additional correction for protein utilization. Protein utilization can be studied by analyzing urinary nitrogen. Therefore, a secondary technique was studied for identifying urea and ammonia concentration in human urine samples. Along this line two methods for detecting urea were explored, a colorimetric technique and it was validated against the Ion-Selective method. The results were then compared by correlation analysis of urine samples measured with both methods simultaneously curves. The equations for fat, carb, and protein oxidation, involving VO2, VCO2 consumption, and urinary nitrogen were implemented and validated, using the above-described methods in a human subject study with 16 subjects. The measurements included diverse diets (normal vs. high fat/protein) in normal energy balance and pre-/post interventions of exercise, fasting, and a high-fat meal. It can be concluded that the indirect calorimetry portable method in conjunction with urine urea methods are important to help the understanding of substrate utilization in human subjects, and therefore, excellent tools to contribute to the treatments and interventions of obesity and overweighted populations.
ContributorsPradhan, Ayushi (Author) / Forzani, Erica (Thesis advisor) / Lind, Mary Laura (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2023
171712-Thumbnail Image.png
Description
Cardiovascular disease is affecting millions of people worldwide and is the leading cause of death in the United States. This disease is closely related to the abnormal creatinine levels in blood. For this reason, there is a need for a low-cost point-of-care device that could measure the creatinine level in

Cardiovascular disease is affecting millions of people worldwide and is the leading cause of death in the United States. This disease is closely related to the abnormal creatinine levels in blood. For this reason, there is a need for a low-cost point-of-care device that could measure the creatinine level in blood with the goal of managing and preventing cardiovascular disease. This project introduces a Molecular Reactive Lateral Flow Assay (MoReLFA) device that is aimed toward creatinine detection based on an optimized chemical reaction of creatinine and alkaline picrate. The device consists of different membranes that accommodate 50 microliters of fluid sample and carry out a colorimetric reaction, in which deposited-colored region is analyzed for Red, Green, and Blue (RGB) components via an image processing software. The color intensity from the RGB outputs was then studied and compared with a gold standard spectrophotometry-based technique. The results show that the MoReLFA sensor could successfully detect creatinine levels in standard solutions. The plot of the sensor color intensity against the absorbance from spectrophotometry shows a good correlation between the two methods (R2 = 0.96). Furthermore, the paper introduces the development of a RGB reader box that is portable and for easy assessment of RGB values. The color intensity from the box shows an increasing trend with increasing creatinine concentrations; and the coefficient of determination of this relationship is 0.85.
ContributorsNguyen, Ngan Anh (Author) / Raupp, Gregory (Thesis advisor) / Forzani, Erica (Thesis advisor) / Mora, Sabrina Jimena (Committee member) / Arizona State University (Publisher)
Created2022
165579-Thumbnail Image.png
Description

Energy Expenditure (EE) (kcal/day) is a key parameter used to guide obesity treatment, and it is often measured from CO2 production, VCO2 (mL/min), and/or O2 consumption, VO2 (mL/min) through the principles of indirect calorimetry. Current EE measurement technologies are limited due to the requirement of wearable facial accessories, which can

Energy Expenditure (EE) (kcal/day) is a key parameter used to guide obesity treatment, and it is often measured from CO2 production, VCO2 (mL/min), and/or O2 consumption, VO2 (mL/min) through the principles of indirect calorimetry. Current EE measurement technologies are limited due to the requirement of wearable facial accessories, which can introduce errors as measurements are not taken under free-living conditions. A novel contactless system, the SmartPad, which measures EE via VCO2 from a room’s ambient CO2 concentration transients was evaluated. First, SmartPad accuracy was validated by comparing the SmartPad’s EE and VCO2 measurements with the measurements of a reference instrument, the MGC Ultima CPXTM, in a cross-sectional study consisting of 20 subjects. A high correlation between the SmartPad’s EE and VCO2 measurements and the MGC Ultima CPX’s EE and VCO2 measurements was found, and the Bland-Altman plots contained a low mean bias for EE and VCO2 measurements. Thus, the SmartPad was validated as being accurate for VCO2 and EE measurements. Next, resting EE (REE) and exercise VCO2 measurements were recorded using the SmartPad and the MGC Ultima CPXTM at different operating CO2 threshold ranges to investigate the influence of measurement duration on system accuracy in an effort to optimize the SmartPad system. The SmartPad displayed 90% accuracy (±1 SD) for 14–19 min of REE measurement and for 4.8–7.0 min of exercise, using a known room’s air exchange rate. Additionally, the SmartPad was validated by accurately measuring subjects’ REE across a wide range of body mass indexes (BMI = 18.8 to 31.4 kg/m^2) with REEs ranging from ~1200 to ~3000 kcal/day. Lastly, the SmartPad has been used to assess the physical fitness of subjects via the “Contactless Thermodynamic Efficiency Test” (CTET).

ContributorsVictor, Shaun (Author) / Forzani, Erica (Thesis director) / Wang, Shaopeng (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
165856-Thumbnail Image.png
Description

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured

Realtime understanding of one’s complete metabolic state is crucial to controlling weight and managing chronic illnesses, such as diabetes. This project represents the development of a novel breath acetone sensor within the Biodesign Institute’s Center for Bioelectronics and Biosensors. The purpose is to determine if a sensor can be manufactured with the capacity to measure breath acetone concentrations typical of various levels of metabolic activity. For this purpose, a solution that selectively interacts with acetone was embedded in a sensor cartridge that is permeable to volatile organic compounds. After 30 minutes of exposure to a range of acetone concentrations, a color change response was observed in the sensors. Requiring only exposure to a breath, these novel sensor configurations may offer non-trivial improvements to clinical and at-home measurement of lipid metabolic rate.

ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis director) / Mora, Sabrina Jimena (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
189407-Thumbnail Image.png
Description
Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer membranes (Nexar™)show excellent permeance (water passage normalized by driving force)

Pervaporation is a membrane process suited to complex and highly contaminated wastewaters. Pervaporation desalination is an emerging area of study where the development of high-performance membranes is necessary to propel the field forward. This research demonstrated that sulfonated block polymer membranes (Nexar™)show excellent permeance (water passage normalized by driving force) of as much as 135.5 ± 29 kg m-2 hr-1 bar-1, with salt removal values consistently equal to or greater than 99.5%. Another challenging water management scenario is in spaceflight situations, such as on the International Space Station (ISS). Spaceflight wastewaters are highly complex, with low pH values, and high levels of contaminants. Current processes produce 70% wastewater recovery, necessitating the handling and processing of concentrated brines. Since recoveries of 85% are desired moving forward, further efforts in water recovery are desirable. An area of concern in these ISS water treatment systems is scalant deposition, especially of divalent ions such as calcium species. Zwitterions are molecules with localized positive and negative charges, but an overall neutral charge. Zwitterions have been used to modify the surface of membranes have shown to decrease fouling. Building a copolymer between zwitterions and other polymers, creates zwitterion layer on top of previously studied Nexar™ membranes. This coating demonstrates great promise to combat scaling, as it increases the hydrophilicity of the membrane surface measured via contact angle. The zwitterion membranes experienced reduced scaling, with the greatest difference being between 1617 ± 241 wt% on control membranes, to 317 ± 87 wt% on zwitterion coated membranes in the presence of CaCl2. In treating spaceflight wastewater, these zwitterion membranes are effective at retaining the acid in the feed, going from a pH value of 2 to 7 and reducing the contamination level of the feed, with a removal value of 99.3 ± 0.4%, measured through conductivity. These membranes also perform well in separation processes that do not require extreme vacuum and can be operated passively. By optimizing both membrane material properties and process conditions, achieving increased high levels of water recovery from spaceflight wastewaters is attainable.
ContributorsThomas, Elisabeth (Author) / Lind, Mary Laura (Thesis advisor) / Forzani, Erica (Committee member) / Perreault, Francois (Committee member) / Walker, W. Shane (Committee member) / Williamson, Jill P (Committee member) / Arizona State University (Publisher)
Created2023
187617-Thumbnail Image.png
Description
Freshwater as the resource for the survival of humans and all lives on earth is very precious but scarce. The shortage of the original freshwater resources and the interfering activities by human and other natural factors form this issue together. To reduce the water supply pressure and deterioration of freshwater

Freshwater as the resource for the survival of humans and all lives on earth is very precious but scarce. The shortage of the original freshwater resources and the interfering activities by human and other natural factors form this issue together. To reduce the water supply pressure and deterioration of freshwater systems (for example, river, wetland, and groundwater), the quantity-increase and the quality-increase strategies should be implemented at the same time. Therefore, corresponding membrane technologies have been developed to achieve water purification with high efficiency and low cost. For desalinating seawater and other types of saline water, pervaporation has been proved that has the potential to complete desalination with salt rejection rate over 99 % when dealing with high salinity water that reverse osmosis (RO) cannot handle. In this dissertation, except the discussion of commonly used materials to synthesize pervaporation membranes, two types of novel pervaporation desalination membranes (nanophotonic-enhanced membrane and free-standing sulfonated membrane) have been presented and discussed. The novel membranes were tested to see the potential of pervaporation to desalinate seawater and saline water with more complex ionic composition, and the possibility of achieving zero liquid discharge in the desalination field when having pervaporation as the assistance. For mitigating polluted water that is caused by human activities, especially agricultural activities, electrodialysis is an effective method to remove specific ions from water, and it does not require extra chemical cost or regeneration. A type of anion exchange membranes inspired by ion exchange resins was synthesized and tested, and the performance on nitrate removal has been evaluated in this dissertation.
ContributorsLi, Yusi (Author) / Lind, Mary Laura (Thesis advisor) / Perreault, Francois (Thesis advisor) / Forzani, Erica (Committee member) / Seo, S. Eileen (Committee member) / Walker, W. Shane (Committee member) / Arizona State University (Publisher)
Created2023
187367-Thumbnail Image.png
Description
Non-invasive biosensors enable rapid, real-time measurement and quantification of biological processes, such as metabolic state. Currently, the most accurate metabolic sensors are invasive, and significant cost is required, with few exceptions, to achieve similar accuracy using non-invasive methods. This research, conducted within the Biodesign Institute Center for Bioelectronics and Biosensors,

Non-invasive biosensors enable rapid, real-time measurement and quantification of biological processes, such as metabolic state. Currently, the most accurate metabolic sensors are invasive, and significant cost is required, with few exceptions, to achieve similar accuracy using non-invasive methods. This research, conducted within the Biodesign Institute Center for Bioelectronics and Biosensors, leverages the selective reactivity of a chemical sensing solution to develop a sensor which measures acetone in the breath for ketosis and ketoacidosis diagnostics, which is relevant to body weight management and type I diabetes. The sensor displays a gradient of color changes, and the absorbance change is proportional to the acetone concentration in the part- per-million range, making applicable for detection ketosis and ketoacidosis in human breath samples. The colorimetric sensor response can be fitted to a Langmuir-like model for sensor calibration. The sensors best performance comes with turbulent, continuous exposure to the samples, rather than batch sample exposure. With that configuration, these novel sensors offer significant improvements to clinical and at- home measurement of ketosis and ketoacidosis.
ContributorsDenham, Landon (Author) / Forzani, Erica (Thesis advisor) / Wang, Shaopeng (Committee member) / Kulick, Doina (Committee member) / Arizona State University (Publisher)
Created2023