Matching Items (67)
153813-Thumbnail Image.png
Description
A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models

A global warming of two degrees Celsius is predicted to drive almost half the world's lizard populations to extinction. Currently, the Phoenix metropolitan region in Arizona, USA, is an average of 3 oC warmer than the surrounding desert. Using a bare lot as a control, I placed copper lizard models with data loggers in several vegetation and irrigation treatments that represent the dominant backyard landscaping styles in Phoenix (grassy mesic with mist irrigation, drip irrigated xeric, unirrigated native, and a hybrid style known as oasis). Lizard activity time in summer is currently restricted to a few hours in un-irrigated native desert landscaping, while heavily irrigated grass and shade trees allow for continual activity during even the hottest days. Maintaining the existing diversity of landscaping styles (as part of an ongoing mitigation strategy targeted at humans) will be beneficial for lizards.

Fourteen native lizard species inhabit the desert surrounding Phoenix, AZ, USA, but only two species persist within heavily developed areas. This pattern is best explained by a combination of socioeconomic status, land cover, and location. Lizard diversity is highest in affluent areas and lizard abundance is greatest near large patches of open desert. The percentage of building cover has a strong negative impact on both diversity and abundance. Despite Phoenix's intense urban heat island effect, which strongly constrains the potential activity and microhabitat use of lizards in summer, thermal patterns have not yet impacted their distribution and relative abundance at larger scales.
ContributorsAckley, Jeffrey (Author) / Wu, Jianguo (Thesis advisor) / Sullivan, Brian (Thesis advisor) / Myint, Soe (Committee member) / DeNardo, Dale (Committee member) / Angilletta Jr., Michael (Committee member) / Arizona State University (Publisher)
Created2015
154025-Thumbnail Image.png
Description
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For

This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900.

The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization.

The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
ContributorsKamal, Samy (Author) / Huang, Huei-Ping (Thesis advisor) / Anderson, James (Thesis advisor) / Herrmann, Marcus (Committee member) / Calhoun, Ronald (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
Description

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the

The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security.

This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania’s Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security.

The results of household survey reveal no difference or lower food security among households that diversify their agricultural activities. Some evidence, however, emerges regarding the importance of home gardens and crop diversification for dietary diversity. The third paper considers the competing discourses surrounding conservation and development in the Kilombero Valley. Employing q-method, this paper discerns four key viewpoints among various stakeholders in the Valley. While there are some apparently intractable distinctions between among these discourses, consensus regarding the importance of wildlife corridors and the presence of boundary-crossing individuals provide the promise of collaboration and compromise.

ContributorsConnors, John Patrick (Author) / Turner, Billie Lee (Thesis advisor) / Eakin, Hallie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2015
154364-Thumbnail Image.png
Description
The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of

The quality of real-world visual content is typically impaired by many factors including image noise and blur. Detecting and analyzing these impairments are important steps for multiple computer vision tasks. This work focuses on perceptual-based locally adaptive noise and blur detection and their application to image restoration.

In the context of noise detection, this work proposes perceptual-based full-reference and no-reference objective image quality metrics by integrating perceptually weighted local noise into a probability summation model. Results are reported on both the LIVE and TID2008 databases. The proposed metrics achieve consistently a good performance across noise types and across databases as compared to many of the best very recent quality metrics. The proposed metrics are able to predict with high accuracy the relative amount of perceived noise in images of different content.

In the context of blur detection, existing approaches are either computationally costly or cannot perform reliably when dealing with the spatially-varying nature of the defocus blur. In addition, many existing approaches do not take human perception into account. This work proposes a blur detection algorithm that is capable of detecting and quantifying the level of spatially-varying blur by integrating directional edge spread calculation, probability of blur detection and local probability summation. The proposed method generates a blur map indicating the relative amount of perceived local blurriness. In order to detect the flat
ear flat regions that do not contribute to perceivable blur, a perceptual model based on the Just Noticeable Difference (JND) is further integrated in the proposed blur detection algorithm to generate perceptually significant blur maps. We compare our proposed method with six other state-of-the-art blur detection methods. Experimental results show that the proposed method performs the best both visually and quantitatively.

This work further investigates the application of the proposed blur detection methods to image deblurring. Two selective perceptual-based image deblurring frameworks are proposed, to improve the image deblurring results and to reduce the restoration artifacts. In addition, an edge-enhanced super resolution algorithm is proposed, and is shown to achieve better reconstructed results for the edge regions.
ContributorsZhu, Tong (Author) / Karam, Lina (Thesis advisor) / Li, Baoxin (Committee member) / Bliss, Daniel (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2016
155098-Thumbnail Image.png
Description
The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy

The combination of rapid urban growth and climate change places stringent constraints on multisector sustainability of cities. Green infrastructure provides a great potential for mitigating anthropogenic-induced urban environmental problems; nevertheless, studies at city and regional scales are inhibited by the deficiency in modelling the complex transport coupled water and energy inside urban canopies. This dissertation is devoted to incorporating hydrological processes and urban green infrastructure into an integrated atmosphere-urban modelling system, with the goal to improve the reliability and predictability of existing numerical tools. Based on the enhanced numerical tool, the effects of urban green infrastructure on environmental sustainability of cities are examined.

Findings indicate that the deployment of green roofs will cool the urban environment in daytime and warm it at night, via evapotranspiration and soil insulation. At the annual scale, green roofs are effective in decreasing building energy demands for both summer cooling and winter heating. For cities in arid and semiarid environments, an optimal trade-off between water and energy resources can be achieved via innovative design of smart urban irrigation schemes, enabled by meticulous analysis of the water-energy nexus. Using water-saving plants alleviates water shortage induced by population growth, but comes at the price of an exacerbated urban thermal environment. Realizing the potential water buffering capacity of urban green infrastructure is crucial for the long-term water sustainability and subsequently multisector sustainability of cities. Environmental performance of urban green infrastructure is determined by land-atmosphere interactions, geographic and meteorological conditions, and hence it is recommended that analysis should be conducted on a city-by-city basis before actual implementation of green infrastructure.
ContributorsYang, Jiachuan (Author) / Wang, Zhihua (Thesis advisor) / Kaloush, Kamil (Committee member) / Myint, Soe (Committee member) / Huang, Huei-Ping (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2016
152681-Thumbnail Image.png
Description
Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up"

Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up" zones. This dissertation examines the biogeomorphological effects of damming ephemeral streams caused by the CAP canal by investigating: (1) changes in the preexisting spatial cover of riparian vegetation and how these changes are affected by stream geometry; (2) green-up initiation and evolution; and (3) changes in plant species and community level changes. To the author's knowledge, this is the only study that undertakes an interdisciplinary approach to understanding the environmental responses to anthropogenically-altered ephemeral stream channels. The results presented herein show that vegetation along the upstream section increased by an average of 200,872 m2 per kilometer of the CAP canal over a 28 year period. Vegetation growth was compared to channel widths which share a quasi-linear relationship. Remote sensing analysis of Landsat TM images using an object-oriented approach shows that riparian vegetation cover gradually increased over 28 years. Field studies reveal that the increases in vegetation are attributed to the artificial rise in local base-level upstream created by the canal, which causes water to spill laterally onto the desert floor. Vegetation within the green-up zone varies considerably in comparison to pre-canal construction. Changes are most notable in vegetation community shifts and abundance. The wettest section of the green-up zone contains the greatest density of woody plant stems, the greatest vegetation volume, and a high percentage of herbaceous cover. Vegetation within wetter zones changed from a tree-shrub to a predominantly tree-herb assemblage, whereas desert shrubs located in zones with intermediate moisture have developed larger stems. Results from this study lend valuable insight to green-up processes associated with damming ephemeral streams, which can be applied to planning future canal or dam projects in drylands. Also, understanding the development of the green-up zones provide awareness to potentially avoiding flood damage to infrastructure that may be unknowingly constructed within the slow-growing green-up zone.
ContributorsHamdan, Abeer (Author) / Schmeeckle, Mark (Thesis advisor) / Myint, Soe (Thesis advisor) / Dorn, Ronald (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2014
152765-Thumbnail Image.png
Description
Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a

Flavivirus infections are emerging as significant threats to human health around the globe. Among them West Nile(WNV) and Dengue Virus (DV) are the most prevalent in causing human disease with WNV outbreaks occurring in all areas around the world and DV epidemics in more than 100 countries. WNV is a neurotropic virus capable of causing meningitis and encephalitis in humans. Currently, there are no therapeutic treatments or vaccines available. The expanding epidemic of WNV demands studies that develop efficacious therapeutics and vaccines and produce them rapidly and inexpensively. In response, our lab developed a plant-derived monoclonal antibody (mAb) (pHu-E16) against DIII (WNV antigen) that is able to neutralize and prevent mice from lethal infection. However, this drug has a short window of efficacy due to pHu-E16's inability to cross the Blood Brain Barrier (BBB) and enter the brain. Here, we constructed a bifunctional diabody, which couples the neutralizing activity of E16 and BBB penetrating activity of 8D3 mAb. We also produced a plant-derived E16 scFv-CH1-3 variant with equivalent specific binding as the full pHu-E16 mAb, but only requiring one gene construct for production. Furthermore, a WNV vaccine based on plant-derived DIII was developed showing proper folding and potentially protective immune response in mice. DV causes severe hemorrhaging diseases especially in people exposed to secondary DV infection from a heterotypic strain. It is hypothesized that sub-neutralizing cross-reactive antibodies from the first exposure aid the second infection in a process called antibody-dependent enhancement (ADE). ADE depends on the ability of mAb to bind Fc receptors (FcγRs), and has become a major roadblock for developing mAb-based therapeutics against DV. We aim to produce an anti-Dengue mAb (E60) in different glycoengineered plant lines that exhibit reduced/differential binding to FcγRs, therefore, reducing or eliminating ADE. We have successfully cloned the molecular constructs of E60, and expressed it in two plant lines with different glycosylation patterns. We demonstrated that both plant-derived E60 mAb glycoforms retained specific recognition and neutralization activity against DV. Overall, our study demonstrates great strives to develop efficacious therapeutics and potent vaccine candidates against Flaviviruses in plant expression systems.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Huffman, Holly A (Committee member) / Steele, Kelly P (Committee member) / Arizona State University (Publisher)
Created2014
155884-Thumbnail Image.png
Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

ContributorsZhao, Qunshan (Author) / Wentz, Elizabeth (Thesis advisor) / Sailor, David (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
156116-Thumbnail Image.png
Description
Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However,

Immunotherapy has been revitalized with the advent of immune checkpoint blockade

treatments, and neo-antigens are the targets of immune system in cancer patients who

respond to the treatments. The cancer vaccine field is focused on using neo-antigens from

unique point mutations of genomic sequence in the cancer patient for making

personalized cancer vaccines. However, we choose a different path to find frameshift

neo-antigens at the mRNA level and develop broadly effective cancer vaccines based on

frameshift antigens.

In this dissertation, I have summarized and characterized all the potential frameshift

antigens from microsatellite regions in human, dog and mouse. A list of frameshift

antigens was validated by PCR in tumor samples and the mutation rate was calculated for

one candidate – SEC62. I develop a method to screen the antibody response against

frameshift antigens in human and dog cancer patients by using frameshift peptide arrays.

Frameshift antigens selected by positive antibody response in cancer patients or by MHC

predictions show protection in different mouse tumor models. A dog version of the

cancer vaccine based on frameshift antigens was developed and tested in a small safety

trial. The results demonstrate that the vaccine is safe and it can induce strong B and T cell

immune responses. Further, I built the human exon junction frameshift database which

includes all possible frameshift antigens from mis-splicing events in exon junctions, and I

develop a method to find potential frameshift antigens from large cancer

immunosignature dataset with these databases. In addition, I test the idea of ‘early cancer

diagnosis, early treatment’ in a transgenic mouse cancer model. The results show that

ii

early treatment gives significantly better protection than late treatment and the correct

time point for treatment is crucial to give the best clinical benefit. A model for early

treatment is developed with these results.

Frameshift neo-antigens from microsatellite regions and mis-splicing events are

abundant at mRNA level and they are better antigens than neo-antigens from point

mutations in the genomic sequences of cancer patients in terms of high immunogenicity,

low probability to cause autoimmune diseases and low cost to develop a broadly effective

vaccine. This dissertation demonstrates the feasibility of using frameshift antigens for

cancer vaccine development.
ContributorsZhang, Jian (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Stafford, Phillip (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2018
158227-Thumbnail Image.png
Description
Deforestation is a common phenomenon in Bangladesh, leaving the country under a great threat of losing its natural habitat. The increasing rate of natural habitat loss has raised questions regarding the country’s forest resource management practices. These practices were originally adopted to protect the forest ecosystem and secure the livelihood

Deforestation is a common phenomenon in Bangladesh, leaving the country under a great threat of losing its natural habitat. The increasing rate of natural habitat loss has raised questions regarding the country’s forest resource management practices. These practices were originally adopted to protect the forest ecosystem and secure the livelihood of the people dependent on forest resources. Despite the support from development partners like the United States Agency for International Development (USAID), the country is still struggling to protect its forest resources from human encroachment. One of the major problems is the lack of inconclusiveness in current approaches. Most initiatives are not evidence-based and are project-based for only a certain period of time. This has failed to ensure sustainable outcomes. This study looks at Bangladesh’s Himchari National Park forest management system to generate evidence regarding deforestation from 1991-2018 and highlight existing gaps. To identify and analyze the gaps, the study uses a social-ecological system (SES) lens. Results reveal deforestation across different time periods, articulates the overall governance structure regarding forest resource management, and provides an overview of the major gaps within the system. The study also offers a set of recommendations for improving the existing management system and policy implications.
ContributorsMahid, Yousuf (Author) / Pijawka, David (Thesis advisor) / Myint, Soe (Thesis advisor) / Liao, Chuan (Committee member) / Arizona State University (Publisher)
Created2020