Matching Items (182,904)
128026-Thumbnail Image.png
Description

The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic

The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300 °C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline silicon wafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450 °C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450 °C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltage of over 710 mV and an efficiency of over 19%.

ContributorsShi, Jianwei (Author) / Boccard, Mathieu (Author) / Holman, Zachary (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-19
128025-Thumbnail Image.png
Description

Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This

Dynamical systems are frequently used to model biological systems. When these models are fit to data, it is necessary to ascertain the uncertainty in the model fit. Here, we present prediction deviation, a metric of uncertainty that determines the extent to which observed data have constrained the model's predictions. This is accomplished by solving an optimization problem that searches for a pair of models that each provides a good fit for the observed data, yet has maximally different predictions. We develop a method for estimating a priori the impact that additional experiments would have on the prediction deviation, allowing the experimenter to design a set of experiments that would most reduce uncertainty. We use prediction deviation to assess uncertainty in a model of interferon-alpha inhibition of viral infection, and to select a sequence of experiments that reduces this uncertainty. Finally, we prove a theoretical result which shows that prediction deviation provides bounds on the trajectories of the underlying true model. These results show that prediction deviation is a meaningful metric of uncertainty that can be used for optimal experimental design.

ContributorsLetham, Benjamin (Author) / Letham, Portia (Author) / Rudin, Cynthia (Author) / Browne, Edward P. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-14
128024-Thumbnail Image.png
Description

We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a

We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.

ContributorsLee, T.-W. (Author) / An, Keju (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-06-01
128023-Thumbnail Image.png
Description

We assess the detectability of city emissions via a tower-based greenhouse gas (GHG) network, as part of the Indianapolis Flux (INFLUX) experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mole fraction measurements in Indianapolis, Indiana for 2011–2013, we quantify spatial

We assess the detectability of city emissions via a tower-based greenhouse gas (GHG) network, as part of the Indianapolis Flux (INFLUX) experiment. By examining afternoon-averaged results from a network of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) mole fraction measurements in Indianapolis, Indiana for 2011–2013, we quantify spatial and temporal patterns in urban atmospheric GHG dry mole fractions. The platform for these measurements is twelve communications towers spread across the metropolitan region, ranging in height from 39 to 136 m above ground level, and instrumented with cavity ring-down spectrometers. Nine of the sites were deployed as of January 2013 and data from these sites are the focus of this paper. A background site, chosen such that it is on the predominantly upwind side of the city, is utilized to quantify enhancements caused by urban emissions. Afternoon averaged mole fractions are studied because this is the time of day during which the height of the boundary layer is most steady in time and the area that influences the tower measurements is likely to be largest. Additionally, atmospheric transport models have better performance in simulating the daytime convective boundary layer compared to the nighttime boundary layer. Averaged from January through April of 2013, the mean urban dormant-season enhancements range from 0.3 ppm CO2 at the site 24 km typically downwind of the edge of the city (Site 09) to 1.4 ppm at the site at the downwind edge of the city (Site 02) to 2.9 ppm at the downtown site (Site 03). When the wind is aligned such that the sites are downwind of the urban area, the enhancements are increased, to 1.6 ppm at Site 09, and 3.3 ppm at Site 02. Differences in sampling height affect the reported urban enhancement by up to 50%, but the overall spatial pattern remains similar. The time interval over which the afternoon data are averaged alters the calculated urban enhancement by an average of 0.4 ppm. The CO2 observations are compared to CO2 mole fractions simulated using a mesoscale atmospheric model and an emissions inventory for Indianapolis. The observed and modeled CO2 enhancements are highly correlated (r2 = 0.94), but the modeled enhancements prior to inversion average 53% of those measured at the towers. Following the inversion, the enhancements follow the observations closely, as expected. The CH4 urban enhancement ranges from 5 ppb at the site 10 km predominantly downwind of the city (Site 13) to 21 ppb at the site near the landfill (Site 10), and for CO ranges from 6 ppb at the site 24 km downwind of the edge of the city (Site 09) to 29 ppb at the downtown site (Site 03). Overall, these observations show that a dense network of urban GHG measurements yield a detectable urban signal, well-suited as input to an urban inversion system given appropriate attention to sampling time, sampling altitude and quantification of background conditions.

ContributorsMiles, Natasha L. (Author) / Richardson, Scott J. (Author) / Lauvaux, Thomas (Author) / Davis, Kenneth J. (Author) / Balashov, Nikolay V. (Author) / Deng, Aijun (Author) / Turnbull, Jocelyn C. (Author) / Sweeney, Colm (Author) / Gurney, Kevin (Author) / Patarasuk, Risa (Author) / Razlivanov, Igor (Author) / Cambaliza, Maria Obiminda L. (Author) / Shepson, Paul B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-13
128022-Thumbnail Image.png
Description

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics, direct flux measurement and modeling algorithms. A second uses a

The INFLUX experiment has taken multiple approaches to estimate the carbon dioxide (CO2) flux in a domain centered on the city of Indianapolis, Indiana. One approach, Hestia, uses a bottom-up technique relying on a mixture of activity data, fuel statistics, direct flux measurement and modeling algorithms. A second uses a Bayesian atmospheric inverse approach constrained by atmospheric CO2 measurements and the Hestia emissions estimate as a prior CO2 flux. The difference in the central estimate of the two approaches comes to 0.94 MtC (an 18.7% difference) over the eight-month period between September 1, 2012 and April 30, 2013, a statistically significant difference at the 2-sigma level. Here we explore possible explanations for this apparent discrepancy in an attempt to reconcile the flux estimates. We focus on two broad categories: 1) biases in the largest of bottom-up flux contributions and 2) missing CO2 sources. Though there is some evidence for small biases in the Hestia fossil fuel carbon dioxide (FFCO2) flux estimate as an explanation for the calculated difference, we find more support for missing CO2 fluxes, with biological respiration the largest of these. Incorporation of these differences bring the Hestia bottom-up and the INFLUX inversion flux estimates into statistical agreement and are additionally consistent with wintertime measurements of atmospheric 14CO2. We conclude that comparison of bottom-up and top-down approaches must consider all flux contributions and highlight the important contribution to urban carbon budgets of animal and biotic respiration. Incorporation of missing CO2 fluxes reconciles the bottom-up and inverse-based approach in the INFLUX domain.

ContributorsGurney, Kevin (Author) / Liang, Jianming (Author) / Patarasuk, Risa (Author) / O'Keeffe, Darragh (Author) / Huang, Jianhua (Author) / Hutchins, Maya (Author) / Lauvaux, Thomas (Author) / Turnbull, Jocelyn C. (Author) / Shepson, Paul B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-03
128021-Thumbnail Image.png
Description

The spatial organization within a social insect colony is a key component of colony life. It influences individual interaction rates, resource distribution, and division of labor within the nest. Yet studies of social insect behavior are most often carried out in artificial constructions, which may change worker behavior and colony

The spatial organization within a social insect colony is a key component of colony life. It influences individual interaction rates, resource distribution, and division of labor within the nest. Yet studies of social insect behavior are most often carried out in artificial constructions, which may change worker behavior and colony organization. We observed how workers of the ant Pheidole rhea organized brood in nests with deep chambers and textured walls that were designed to mimic their natural constructions more closely. Instead of clumping larvae into piles on the chamber floor, workers suspended fourth-instar larvae from the vertical walls and ceiling of each chamber while young larvae and pupae were clumped at the base. Fourth-instar larvae possess five rows of anchor-tipped hairs on their dorsal side, and we predicted that these hairs functioned to attach larvae to the nest walls. We gave larvae “haircuts,” where only the anchor-tipped hairs were removed, and then tested their ability to adhere to a textured surface raised to an angle of 90° and then 120° with respect to the horizontal plane. Larvae whose hairs had been clipped came unattached in almost all trials, while larvae whose hairs remained intact stayed attached. This confirmed that anchor-tipped hairs functioned to attach larvae to the walls of the nest. The presence of anchor-tipped hairs is widespread and has been documented in at least 22 genera from the ant subfamily Myrmicinae, including species that occur in a variety of environments and represent a broad range of nesting habits. Based on our results, it is likely that many species exhibit this larval hanging behavior, and this could impact colony characteristics such as spatial organization and the care of developing larvae by nurse workers.

ContributorsPenick, Clint (Author) / Copple, R. Neal (Author) / Mendez, Raymond A. (Author) / Smith, Adrian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-07-25
128020-Thumbnail Image.png
Description

Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing

Scholarly communication is at an unprecedented turning point created in part by the increasing saliency of data stewardship and data sharing. Formal data management plans represent a new emphasis in research, enabling access to data at higher volumes and more quickly, and the potential for replication and augmentation of existing research. Data sharing has recently transformed the practice, scope, content, and applicability of research in several disciplines, in particular in relation to spatially specific data. This lends exciting potentiality, but the most effective ways in which to implement such changes, particularly for disciplines involving human subjects and other sensitive information, demand consideration. Data management plans, stewardship, and sharing, impart distinctive technical, sociological, and ethical challenges that remain to be adequately identified and remedied. Here, we consider these and propose potential solutions for their amelioration.

ContributorsHartter, Joel (Author) / Ryan, Sadie J. (Author) / MacKenzie, Catrina A. (Author) / Parker, John (Author) / Strasser, Carly A. (Author) / Barrett, The Honors College (Contributor)
Created2013-09-13
128019-Thumbnail Image.png
Description

We report the crack-free growth of a 45-pair Al0.30Ga0.70N/Al0.04Ga0.96N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al0.30Ga0.70N on GaN, an AlN template was employed in this work. On the other hand,

We report the crack-free growth of a 45-pair Al0.30Ga0.70N/Al0.04Ga0.96N distributed Bragg reflector (DBR) on 2 in. diameter AlN/sapphire template by metalorganic chemical vapor deposition. To mitigate the cracking issue originating from the tensile strain of Al0.30Ga0.70N on GaN, an AlN template was employed in this work. On the other hand, strong compressive strain experienced by Al0.04Ga0.96N favors 3D island growth, which is undesired. We found that inserting an 11 nm thick GaN interlayer upon the completion of AlN template layer properly managed the strain such that the Al0.30Ga0.70N/Al0.04Ga0.96N DBR was able to be grown with an atomically smooth surface morphology. Smooth surfaces and sharp interfaces were observed throughout the structure using high-angle annular dark-field imaging in the STEM. The 45-pair AlGaN-based DBR provided a peak reflectivity of 95.4% at λ = 368 nm with a bandwidth of 15 nm.

ContributorsLiu, Yuh-Shiuan (Author) / Wang, Shuo (Author) / Xie, Hongen (Author) / Kao, Tsung-Ting (Author) / Mehta, Karan (Author) / Jia Jia, Xiao (Author) / Shen, Shyh-Chiang (Author) / Yoder, P. Douglas (Author) / Ponce, Fernando (Author) / Detchprohm, Theeradetch (Author) / Dupuis, Russell D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-25
128018-Thumbnail Image.png
Description

Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion

Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios.

Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments.

Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty.

Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty.

Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope.

ContributorsGosling, Simon N. (Author) / Hondula, David M. (Author) / Bunker, Aditi (Author) / Ibarreta, Dolores (Author) / Liu, Junguo (Author) / Zhang, Xinxin (Author) / Sauerborn, Rainer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-16
128017-Thumbnail Image.png
Description

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous

The strong light-matter interaction and the valley selective optical selection rules make monolayer (ML) MoS2 an exciting 2D material for fundamental physics and optoelectronics applications. But, so far, optical transition linewidths even at low temperature are typically as large as a few tens of meV and contain homogeneous and inhomogeneous contributions. This prevented in-depth studies, in contrast to the better-characterized ML materials MoSe2 and WSe2. In this work, we show that encapsulation of ML MoS2 in hexagonal boron nitride can efficiently suppress the inhomogeneous contribution to the exciton linewidth, as we measure in photoluminescence and reflectivity a FWHM down to 2 meV at T = 4 K. Narrow optical transition linewidths are also observed in encapsulated WS2, WSe2, and MoSe2 MLs. This indicates that surface protection and substrate flatness are key ingredients for obtaining stable, high-quality samples. Among the new possibilities offered by the well-defined optical transitions, we measure the homogeneous broadening induced by the interaction with phonons in temperature-dependent experiments. We uncover new information on spin and valley physics and present the rotation of valley coherence in applied magnetic fields perpendicular to the ML.

ContributorsCadiz, F. (Author) / Courtade, E. (Author) / Robert, C. (Author) / Wang, G. (Author) / Shen, Yuxia (Author) / Cai, Hui (Author) / Taniguchi, T. (Author) / Watanabe, K. (Author) / Carrere, H. (Author) / Lagarde, D. (Author) / Manca, M. (Author) / Amand, T. (Author) / Renucci, P. (Author) / Tongay, Sefaattin (Author) / Marie, X. (Author) / Urbaszek, B. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-05-18