Matching Items (3)
Filtering by

Clear all filters

132611-Thumbnail Image.png
Description
Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat

Consequences of drug abuse and addiction affect both men and women, but women tend to rapidly progress through drug addiction phases, have higher drug dependency, and have higher relapse rates. Ovarian hormones fluctuate with female reproductive cycles and are thought to cause increased sensitivity to psychostimulants. Additionally, intermittent social defeat stress induces social avoidance, weight loss, and long-lasting cross-sensitization to psychostimulants, which is associated with increased FosB/ΔFosB expression in the nucleus accumbens (NAc) shell. In this study, we examined the estrous cycle in female rats on social defeat stress-induced amphetamine cross-sensitization through FosB/ΔFosB expression in the NAc shell. Every third day for ten days, we induced social defeat stress in rats through short confrontations with a lactating female resident rat and her pups. In parallel, a group of rats were handled for control. Vaginal swabs were taken daily to assess estrous stage. Ten days after the last stress exposure, rats were administered a low dose of amphetamine (0.5 mg/kg, i.p.), which induced cross-sensitization in stressed rats, evidenced by enhanced locomotor activity. Approximately 3-10 days after amphetamine challenge, brain tissue was collected for immunohistochemistry analyses. Stressed female rats had lower body weight gain, higher social avoidance, and increased FosB/ΔFosB expression in the NAc shell. Differences in FosB/ΔFosB expression in the NAc shell was also observed in handled animals in different estrous stages. Furthermore, rats in proestrous/estrous stages displayed enhanced social defeat stress-induced amphetamine cross-sensitization in comparison to rats in metestrous/diestrous stages. Elucidating the effects of the female reproductive cycle on drug use may provide a novel approach to treatments or therapies in preventing women’s stress-induced vulnerability to substance abuse.
ContributorsAzuma, Alyssa (Author) / Neisewander, Janet (Thesis director) / Nikulina, Ella (Thesis director) / Hammer, Ronald (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134358-Thumbnail Image.png
Description
Substance abuse disorder is a debilitating condition characterized by recurring drug-seeking behaviors and high rates of relapse. In male rats, this tendency to engage in drug-seeking behavior can be inhibited by environmental enrichment (EE) during abstinence. We have shown previously that cocaine-seeking behavior is associated with an increase in addiction-related

Substance abuse disorder is a debilitating condition characterized by recurring drug-seeking behaviors and high rates of relapse. In male rats, this tendency to engage in drug-seeking behavior can be inhibited by environmental enrichment (EE) during abstinence. We have shown previously that cocaine-seeking behavior is associated with an increase in addiction-related genes such as Arc and CamkIIa and a decrease in the microRNA miR-495. We have also shown that miR-495 inhibits expression of Arc and CamkIIa post-transcriptionally. Therefore, we hypothesize that reduced cocaine-seeking behavior in EE female rats is associated with a downregulation of these addiction-related genes as well as an upregulation of miR-495 in the NAc shell. Based on previous studies that highlight differences between male and female motivation for cocaine, we also hypothesize that EE will not affect female motivation for cocaine as robustly as males. After acquiring cocaine through self-administration, females were assigned to either an enriched environment (EE) condition or an isolated condition, where they remained during abstinence. They were then given a one-hour cue-reactivity test, during which cocaine-seeking behavior differed significantly between the EE and isolated groups. We also found that the addiction-related genes Arc and CamkIIa were downregulated in the NAc core of EE females. Future research is needed to examine the role of miR-495 in these changes in behavior and gene expression. Overall, the results suggest that EE is protective against relapse to cocaine-seeking in females and may normalize the dysregulation of genes by cocaine.
ContributorsSt Peter, Madeleine Kay (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
193683-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central

Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central hypothesis is that CP-94,253 acts at 5-HT1BRs located on the terminals of NAcSh GABA neurons that undergo regulatory changes in response to cocaine SA and subsequent abstinence resulting in an abstinence-induced switch in the functional effects of CP-94,253 in both male and female rats. In the first series of experiments, I compared the functional effects of CP-94,253 in female rats to male rats: 1) during maintenance of daily cocaine SA, 2) after 21-60 days abstinence, and 3) during the resumption of cocaine SA after abstinence (i.e. model of relapse). I found that CP-94,253 enhanced cocaine intake and breakpoints on a high-effort progressive ratio schedule of cocaine reinforcement during maintenance regardless of sex. By contrast, CP-94,253 attenuated cocaine intake after 21 days of abstinence and during the relapse test, regardless of sex. These findings suggest: 1) an abstinence-induced inhibitory effect of the 5-HT1BR agonist occurs in both sexes, 2) these inhibitory effects are long-lasting, and 3) the agonist may provide a novel therapeutic for cocaine use disorders. I next used RNAscope in situ hybridization to measure regulatory changes in 5-HT1BR mRNA expression and its co-expression with GABAergic and glutamatergic cell markers in the lateral and medial NAcSh subregions after abstinence from cocaine. I found no significant changes in these measures in either subregion of NAcSh after prolonged abstinence in either sex; however, I did observe that 95% of 5-HT1BR mRNA is co-localized in GABAergic neurons, whereas <2% is co-localized in glutamatergic cells. Future research investigating abstinence-induced, functional changes in 5-HT1BRs in subregions of the NAcSh is an alternate approach to further test my hypothesis. This research is important for the development of 5-HT1BR agonists as putative treatments of cocaine use disorders.
ContributorsScott, Samantha N (Author) / Neisewander, Janet L (Thesis advisor) / Newbern, Jason (Committee member) / Olive, Michael F (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2024