Matching Items (11)
Filtering by

Clear all filters

151369-Thumbnail Image.png
Description
This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space

This thesis addresses certain quantum aspects of the event horizon using the AdS/CFT correspondence. This correspondence is profound since it describes a quantum theory of gravity in d + 1 dimensions from the perspective of a dual quantum field theory living in d dimensions. We begin by considering Rindler space which is the part of Minkowski space seen by an observer with a constant proper acceleration. Because it has an event horizon, Rindler space has been studied in great detail within the context of quantum field theory. However, a quantum gravitational treatment of Rindler space is handicapped by the fact that quantum gravity in flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space (AdS), is relatively well understood via the AdS/CFT correspondence. Taking this cue, we construct Rindler coordinates for AdS (Rindler-AdS space) in d + 1 spacetime dimensions. In three spacetime dimensions, we find novel one-parameter families of stationary vacua labeled by a rotation parameter β. The interesting thing about these rotating Rindler-AdS spaces is that they possess an observer-dependent ergoregion in addition to having an event horizon. Turning next to the application of AdS/CFT correspondence to Rindler-AdS space, we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal field theory (CFT) that lives on two boundaries with geometry R × Hd-1. Specializing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS space using the boundary CFT. We then probe the causal structure of the spacetime by sending in a time-like source and observe that the CFT “knows” when the source has fallen past the Rindler horizon. We conclude by proposing an alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space. Towards the end, we consider the concept of weak measurements in quantum mechanics, wherein the measuring instrument is weakly coupled to the system being measured. We consider such measurements in the context of two examples, viz. the decay of an excited atom, and the tunneling of a particle trapped in a well, and discuss the salient features of such measurements.
ContributorsSamantray, Prasant (Author) / Parikh, Maulik (Thesis advisor) / Davies, Paul (Committee member) / Vachaspati, Tanmay (Committee member) / Easson, Damien (Committee member) / Alarcon, Ricardo (Committee member) / Arizona State University (Publisher)
Created2012
152355-Thumbnail Image.png
Description
For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012

For this project, the diffuse supernova neutrino background (DSNB) has been calculated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse electron antineutrino flux is ∼ 0.10 – 0.59 /cm2/s at 99% confidence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 /cm2/s, above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming collapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, ∼ 1s. They could be identified by the time coincidence of N ≥2 or N ≥3 events within 1s time window from nearby (4 – 5 Mpc) failed supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel, is discussed. Results are applied to serval models of UHE neutrino sources. Suppression effects are strong for sources that extend beyond z ∼ 10. This provides a fascinating probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10 – 100. Ultimately this research will examine the detectability of DSNB, neutrino bursts from failed supernovae and absorption effects in the neutrino spectrum.
ContributorsYang, Lili, 1970- (Author) / Lunardini, Cecilia (Thesis advisor) / Alarcon, Ricardo (Committee member) / Shovkovy, Igor (Committee member) / Timmes, Francis (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
Description
This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).
ContributorsUnterkofler, Eric (Author) / Skinner, Tristin (Co-author) / Covatto, Carl (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
Description

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be

This document is a guide that can be used by undergraduate physics students alongside Richard J. Jacob and Professor Emeritus’s Tutorials in the Mathematical Methods of Physics to aid in their understanding of the key mathematical concepts from PHY201 and PHY302. This guide can stand on its own and be used in other upper division physics courses as a handbook for common special functions. Additionally, we have created several Mathematica notebooks that showcase and visualize some of the topics discussed (available from the GitHub link in the introduction of the guide).

ContributorsSkinner, Tristin (Author) / Unterkofler, Eric (Co-author) / Covatto, Carl (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
171920-Thumbnail Image.png
Description
Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It

Proton radiotherapy has recently become a popular form of cancer treatment. For maximum effectiveness, accurate models are needed to calculate proton angular scattering and energy loss. Scattering events are statistically independent and may be calculated from the effective number of events per reciprocal multiple scattering angle or energy loss. It is shown that multiple scattering distributions from Molière’s scattering law can be convolved by depth for accurate numerical calculation of angular distributions in several example materials. This obviates the need for correction factors to the analytic solution and its approximations. It is also shown that numerically solving Molière’s scattering law in terms of the complete (non-small angle) differential cross section and large angle approximations extends the validity of Molière theory to large angles. To calculate probability energy loss distributions, Landau-Vavilov theory is adapted to Fourier transforms and extended to very thick targets through convolution over the probability energy loss distributions in each depth interval. When the depth is expressed in terms of the continuous slowing down approximation (CSDA) the resulting probability energy loss distributions rely on the mean excitation energy as the sole material dependent parameter. Through numerical calculation of the CSDA over the desired energy loss, this allows the energy loss cross section to vary across the distribution and accurately accounts for broadening and skewness for thick targets in a compact manner. An analytic, Fourier transform solution to Vavilov’s integral is shown. A single scattering nuclear model that calculates large angle dose distributions that have a similar functional form to FLUKA (FLUktuierende KAskade) Monte Carlo, is also introduced. For incorporation into Monte Carlo or a treatment planning system, lookup tables of the number of scattering events or cross sections for different clinical energies may be used to determine angular or energy loss distributions.
ContributorsBrosch, Ryan Michael (Author) / Rez, Peter (Thesis advisor) / Alarcon, Ricardo O (Thesis advisor) / Vachaspati, Tanmay (Committee member) / Treacy, Michael M.J. (Committee member) / Arizona State University (Publisher)
Created2022
190761-Thumbnail Image.png
Description
In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical Hamiltonian models). This sparsity

In this thesis, applications of sparsity, specifically sparse-tensors are motivated in physics.An algorithm is introduced to natively compute sparse-tensor's partial-traces, along with direct implementations in popular python libraries for immediate use. These applications include the infamous exponentially-scaling (with system size) Quantum-Many-Body problems (both Heisenberg/spin-chain-like and Chemical Hamiltonian models). This sparsity aspect is stressed as an important and essential feature in solving many real-world physical problems approximately-and-numerically. These include the original motivation of solving radiation-damage questions for ultrafast light and electron sources.
ContributorsCandanedo, Julio (Author) / Beckstein, Oliver (Thesis advisor) / Arenz, Christian (Thesis advisor) / Keeler, Cynthia (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2023
187562-Thumbnail Image.png
Description
Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of

Much attention has been given to the behavior of quantum fields in expanding Freidmann-Lema\^itre-Robertson-Walker (FLRW) spacetimes, and de Sitter spacetime in particular. In such spacetimes, the S-matrix is ill-defined, so new observables must be constructed that are accessible to both computation and measurement. The most common observable in theories of inflation is an equal-time correlation function, typically computed in the in-in formalism. Weinberg improved upon in-in perturbation theory by reducing the perturbative expansion to a series of nested commutators. Several authors noted a technical difference between Weinberg's formula and standard in-in perturbation theory. In this work, a proof of the order-by-order equivalence of Weinberg's commutators to traditional in-in perturbation theory is presented for all masses and commonly studied spins in a broad class of FLRW spacetimes. Then, a study of the effects of a sector of conformal matter coupled solely to gravity is given. The results can constrain N-naturalness as a complete solution of the hierarchy problem, given a measurement of the tensor fluctuations from inflation. The next part of this work focuses on the thermodynamics of de Sitter. It has been known for decades that there is a temperature associated with a cosmological horizon, which matches the thermal response of a comoving particle detector in de Sitter. A model of a perfectly reflecting cavity is constructed with fixed physical size in two-dimensional de Sitter spacetime. The natural ground state inside the box yields no response from a comoving particle detector, implying that the box screens out the thermal effects of the de Sitter horizon. The total energy inside the box is also shown to be smaller than an equivalent volume of the Bunch-Davies vacuum state. The temperature difference across the wall of the box might drive a heat engine, so an analytical model of the Szil\'ard engine is constructed and studied. It is found that all relevant thermodynamical quantities can be computed exactly at all stages of the engine cycle.
ContributorsThomas, Logan (Author) / Baumgart, Matthew (Thesis advisor) / Davies, Paul (Committee member) / Easson, Damien (Committee member) / Keeler, Cynthia (Committee member) / Arizona State University (Publisher)
Created2023
171610-Thumbnail Image.png
Description
As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters from 490nm − 660nm are provided. Narrow-band photometry data are

As a demonstration study of low-resolution spectrophotometry, the photometric redshift estimation with narrow-band optical photometry of nine galaxy clusters is presented in this thesis. A complete data reduction process of the photometryusing up to 16 10nm wide narrow-band optical filters from 490nm − 660nm are provided. Narrow-band photometry data are combined with broad-band photometry (SDSS/Pan-STARRS) for photometric redshift fitting. With available spectroscopic redshift data from eight of the fields, I evaluated the fitted photometric redshift results and showed that combining broad-band photometric data with narrow-band data result in improvements of factor 2-3, compared to redshift estimations from broad-band photometry alone. With 15 or 16 narrow-band data combined with SDSS (Sloan Digital Sky Survey) or Pan-STARRS1 (The Panoramic Survey Telescope and Rapid Response System) data, a Normalized Median Absolute Deviation of σNMAD ∼ 0.01−0.016 can be achieved. The multiband images of galaxy cluster ABELL 611 have been used to further study intracluster light around its brightest cluster galaxy (BCG). It can be shown here that fitting of BCG+ICL stellar properties using the averaged 1-dimensional radial profile is possible up to ∼ 100kpc within this cluster. The decreasing in age of the stellar population as a function of radius from the BCG+ICL profile, though not entirely conclusive, demonstrates possible future application of low-resolution spectrophotometry on the ICL studies. Finally, Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) mission planning study are covered, and a methodology of visualization tool for target availability is described.
ContributorsWang, Pao-Yu (Author) / Mauskopf, Philip (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2022
165116-Thumbnail Image.png
Description

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The

In a hypothetical Grand Unified Theory, magnetic monopoles are a particle which would act as a charge carrier for the magnetic force. Evidence of magnetic monopoles has yet to be found and based off of their relatively high mass (4-10 TeV) will be difficult to find with current technology. The goal of my thesis is to mathematically model the magnetic monopole by finding numerical solutions to the equations of motion. In my analysis, I consider four cases: kinks, cosmic strings, global monopoles, and magnetic monopoles. I will also study electromagnetic gauge fields to prepare to include gauge fields in the magnetic monopole case. Numerical solutions are found for the cosmic string and global monopole cases. As expected, the energy is high at small distance r and drops off as r goes to infinity. Currently numerical solutions are being worked towards for electromagnetic gauge fields and the magnetic monopole case.

ContributorsBrown, Taryn (Author) / Vachaspati, Tanmay (Thesis director) / Keeler, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor)
Created2022-05
156309-Thumbnail Image.png
Description
The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the

The Cosmic Microwave Background (CMB) has provided precise information on the evolution of the Universe and the current cosmological paradigm. The CMB has not yet provided definitive information on the origin and strength of any primordial magnetic fields or how they affect the presence of magnetic fields observed throughout the cosmos. This work outlines an alternative method to investigating and identifying the presence of cosmic magnetic fields. This method searches for Faraday Rotation (FR) and specifically uses polarized CMB photons as back-light. I find that current generation CMB experiments may be not sensitive enough to detect FR but next generation experiments should be able to make highly significant detections. Identifying FR with the CMB will provide information on the component of magnetic fields along the line of sight of observation.

The 21cm emission from the hyperfine splitting of neutral Hydrogen in the early universe is predicted to provide precise information about the formation and evolution of cosmic structure, complementing the wealth of knowledge gained from the CMB.

21cm cosmology is a relatively new field, and precise measurements of the Epoch of Reionization (EoR) have not yet been achieved. In this work I present 2σ upper limits on the power spectrum of 21cm fluctuations (Δ²(k)) probed at the cosmological wave number k from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) 64 element deployment. I find upper limits on Δ²(k) in the range 0.3 < k < 0.6 h/Mpc to be (650 mK)², (450 mK)², (390 mK)², (250 mK)², (280mK)², (250 mK)² at redshifts z = 10.87, 9.93, 8.91, 8.37, 8.13 and 7.48 respectively

Building on the power spectrum analysis, I identify a major limiting factor in detecting the 21cm power spectrum.

This work is concluded by outlining a metric to evaluate the predisposition of redshifted 21cm interferometers to foreground contamination in power spectrum estimation. This will help inform the construction of future arrays and enable high fidelity imaging and

cross-correlation analysis with other high redshift cosmic probes like the CMB and other upcoming all sky surveys. I find future

arrays with uniform (u,v) coverage and small spectral evolution of their response in the (u,v,f) cube can minimize foreground leakage while pursuing 21cm imaging.
ContributorsKolopanis, Matthew John (Author) / Bowman, Judd (Thesis advisor) / Mauskopf, Philip (Thesis advisor) / Lunardini, Cecilia (Committee member) / Chamberlin, Ralph (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2018