Matching Items (83)
Description

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique capabilities to study phonon dispersion in these materials. Here, we study the cubic peak of the quantum paraelectric strontium titanate (SrTiO3, STO) below the 110 K cubic-to-tetragonal tran- sition. Our results reveal a temperature and field strength dependence of the transverse acoustic mode in agreement with previous work on the avoided crossing occurring at finite wavevector, as well as evidence of anharmonic coupling between transverse optical phonons and a fully symmetric A1g phonon. These results elucidate previous optical studies on STO and hold promise for future studies on the hidden metastable phases of quantum materials.

ContributorsStanton, Jade (Author) / Teitelbaum, Samuel (Thesis director) / Smith, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
168277-Thumbnail Image.png
Description
In this project, the potential of ferrous iron precipitation as an alternative for ground improvement applications is investigated. This study analyzes the potential of naturally occurring iron oxidation, which uses Fe2+ as an electron donor to produce Fe3+ precipitate. The goal of this study was to stimulate or accelerate the

In this project, the potential of ferrous iron precipitation as an alternative for ground improvement applications is investigated. This study analyzes the potential of naturally occurring iron oxidation, which uses Fe2+ as an electron donor to produce Fe3+ precipitate. The goal of this study was to stimulate or accelerate the naturally occurring iron oxidation and precipitation process, to form a ferruginous crust in the subsurface, that would reduce hydraulic conductivity or increase soil strength. Iron precipitation can occur through aerobic or anaerobic iron oxidizers. Initial experimental test results in falcon tubes and a literature review showed that to obtain significant oxidation of ferrous iron and consequent precipitation of iron minerals required a buffer to prevent acidification. Experimental studies in which aerobic and anaerobic iron precipitation is stimulated in sand columns under various boundary conditions also leads to an optimization of conditions for mineralization. Mineralized zones are evaluated via permeability loss tests, extent of iron oxidized and characterization tests which show that the crust has the most concentration of precipitated iron, which can be used in targeting pollution mitigation, erosion control, etc. The results show a significant loss of permeability- by a factor of two, in high concentration of iron with a balanced buffer control. In this study, the knowledge on ground stabilization by studying the naturally occurring mechanism of iron precipitation, leading to possible industrially relevant geotechnical applications are successfully investigated.
ContributorsKanawade, Sahil (Author) / Torres, Cesar (Thesis advisor) / van Paassen, Leon (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2021
168763-Thumbnail Image.png
Description
Energy can be harvested from wastewater using microbial fuel cells (MFC). In order to increase power generation, MFCs can be scaled-up. The MFCs are designed with two air cathodes and two anode electrodes. The limiting electrode for power generation is the cathode and in order to maximize power, the cathodes

Energy can be harvested from wastewater using microbial fuel cells (MFC). In order to increase power generation, MFCs can be scaled-up. The MFCs are designed with two air cathodes and two anode electrodes. The limiting electrode for power generation is the cathode and in order to maximize power, the cathodes were made out of a C-N-Fe catalyst and a polytetrafluoroethylene binder which had a higher current production at -3.2 mA/cm2 than previous carbon felt cathodes at -0.15 mA/cm2 at a potential of -0.29 V. Commercial microbial fuel cells from Aquacycl were tested for their power production while operating with simulated blackwater achieved an average of 5.67 mW per cell. The small MFC with the C-N-Fe catalyst and one cathode was able to generate 8.7 mW. Imitating the Aquacycl cells, the new MFC was a scaled-up version of the small MFC where the cathode surface area increased from 81 cm2 to 200 cm2. While the MFC was operating with simulated blackwater, the peak power produced was 14.8 mW, more than the smaller MFC, but only increasing in the scaled-up MFC by 1.7 when the surface area of the cathode increased by 2.46. Further long-term application can be done, as well as operating multiple MFCs in series to generate more power and improve the design.
ContributorsRussell, Andrea (Author) / Torres, Cesar (Thesis advisor) / Garcia Segura, Sergio (Committee member) / Fraser, Matthew (Committee member) / Arizona State University (Publisher)
Created2022
168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
193650-Thumbnail Image.png
Description
The recently discovered fast growing cyanobacterium Synechococcus sp. PCC 11901 has high industrial potential due to its quick doubling time, ability to grow on various carbon substrates and unique metabolism. Since its discovery, little work has been done to model the metabolic pathways present in the organism. In order to

The recently discovered fast growing cyanobacterium Synechococcus sp. PCC 11901 has high industrial potential due to its quick doubling time, ability to grow on various carbon substrates and unique metabolism. Since its discovery, little work has been done to model the metabolic pathways present in the organism. In order to accurately model such an organism, experimentally determined steady state biomass flux constraints are necessary. These constraints will influence the design of a flux balance analysis model & provide realistic restrictions on the model’s outputs. The construction of such a metabolic model will assist metabolic engineers in their genetic design. By modeling the thousands of reactions and each metabolite present in the organism, engineers can gain deep insights into the complex nature of metabolism. By designing new reaction pathways, and changing the model, metabolic engineers can use this work to predict the result of various genetic manipulations on the organism. This serves as the experimental basis for building such a model.
ContributorsComes, Jackson (Author) / Varman, Arul (Thesis advisor) / Torres, Cesar (Committee member) / Davis, Ryan (Committee member) / Arizona State University (Publisher)
Created2024
189215-Thumbnail Image.png
Description
Polymers have played a pivotal role in building modern society. Polymers can be classified as synthetic and natural polymers. Accumulation of both synthetic and natural polymer waste leads to environmental pollution. This dissertation aims at developing one-pot bioprocesses for a breakdown of natural polymers like cellulose, and hemicellulose and synthetic

Polymers have played a pivotal role in building modern society. Polymers can be classified as synthetic and natural polymers. Accumulation of both synthetic and natural polymer waste leads to environmental pollution. This dissertation aims at developing one-pot bioprocesses for a breakdown of natural polymers like cellulose, and hemicellulose and synthetic polymers like polyethylene terephthalate (PET). First, a one-pot process was developed for hemicellulose breakdown. A signal peptide library of native SEC pathway signal peptides was developed for efficient secretion of endoxylanse enzyme. Furthermore, in situ, the process was successfully created for hemicellulose to xylose with the highest reported xylose titer of 7.1 g/L. In addition, E. coli: B. subtilis coculture bioprocess was developed to produce succinate, ethanol, and lactate from hemicellulose in one pot process. Second, a one-pot process was developed for cellulose breakdown. In vitro enzyme assays were used to select SEC pathway signal peptides for endoglucanase and glucosidase secretion. Then, the breakdown of carboxymethyl cellulose (CMC), a cellulose derivative, was conducted in in situ conditions. U-13C fingerprinting study showed carbon enrichment from CMC when cultures were cofed with CMC and [U-13C] glucose. Further, Whatman filter paper sheets showed a change in shape in recombinant cocultures. SEM images showed continuous orientation in the case of two enzymes confirmed by fast Fourier transform (FFT), suggesting higher crystallinity of residues. Similarly, in microcrystalline cellulose breakdown in in situ conditions, a 72% reduction of avicel cellulose was achieved in a one pot bioprocess. SEM images revealed valleys and crevices on residues of coculture compared to smoother surfaces in monoculture residues pressing the importance of the synergistic activity of enzymes. Finally, one pot deconstruction process was developed for synthetic polymer PET. First, the PET hydrolase secretion strain was developed by selecting a signal peptide library. The first bis(2-hydroxyethyl) terephthalate (BHET) consolidated bioprocess was developed, which produced a terephthalic acid titer of 7.4 g/L. PET breakdown was successfully demonstrated in in vitro conditions with a TPA titer of 4 g/L. Furthermore, PET breakdown was successfully demonstrated in in situ conditions. Consolidated bioprocesses can be an invaluable approach to waste utilization and making cost-effective processes.
ContributorsMhatre, Apurv (Author) / Varman, Arul (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2023
193616-Thumbnail Image.png
Description
In order to optimize the ability of Geobacter sulfurreducens to produce electrical current and remediate wastewater, several physiological challenges must be overcome. The accumulation of protons at the electrode surface of a microbial fuel cell (MFC) decreases the pH, and, thus, the ability of the bacteria to maintain baseline metabolic

In order to optimize the ability of Geobacter sulfurreducens to produce electrical current and remediate wastewater, several physiological challenges must be overcome. The accumulation of protons at the electrode surface of a microbial fuel cell (MFC) decreases the pH, and, thus, the ability of the bacteria to maintain baseline metabolic conditions. To evaluate the extent to which this pH change hinders performance, the buffer concentration supplied to G. sulfurreducens reactors was varied. The resulting biofilms were subjected to chronoamperometry, cyclic voltammetry, and confocal microscopy to determine metabolic function and biofilm thickness. Biofilms grown with a 30-mM bicarbonate buffer experienced limitations on cell function and current output due to proton accumulation, while 90- and 150-mM conditions alleviated these limitations most of the measurements. Based on the current output, estimated biofilm thickness, and the medium-rate and slow-rate scan rate cyclic voltammetry, benefits exist for buffer concentrations greater than 30 mM. If the kinetics of G. sulfurreducens electron transfer are optimized, the potential of the technique to be implemented for energy recovery is improved.
ContributorsCoulam, Jordan (Author) / Torres, Cesar (Thesis advisor) / Delgado, Anca (Committee member) / Rittmann, Bruce (Committee member) / Arizona State University (Publisher)
Created2024
ContributorsForgey, Sydney (Performer) / Hickman, Miriam, 1955- (Performer) / Smith, David (Performer) / ASU Library. Music Library (Publisher)
Created2020-03-25
156673-Thumbnail Image.png
Description
A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo

A piezoelectric transducer, comprised of electroded and active pad PZT layer atop a backing PZT layer and protected with an acoustic matching layer, and operating under a pulse-echo technique for longitudinal ultrasonic imaging, acts as both source and detector.

Ultrasonic transducer stacks (modules), which had failed or passed during pulse-echo sensitivity testing, were received from Consortium X. With limited background information on these stacks, the central theme was to determine the origin(s) of failure via the use of thermal and physicochemical characterization techniques.

The optical and scanning electron microscopy revealed that contact electrode layers are discontinuous in all samples, while delaminations between electrodes and pad layer were observed in failed samples. The X-ray diffraction data on the pad PZT revealed an overall c/a ratio of 1.022 ratio and morphotropic boundary composition, with significant variations of the Zr to Ti ratio within a sample and between samples. Electron probe microanalysis confirmed that the overall Zr to Ti ratio of the pad PZT was 52/48, and higher amounts of excess PbO in failed samples, whereas, inductively coupled plasma mass spectrometry revealed the presence of Mn, Al, and Sb (dopants) and presence of Cu (sintering aid) in in this hard (pad) PZT. Additionally, three exothermic peaks during thermal analysis was indicative of incomplete calcination of pad PZT. Moreover, transmission electron microscopy and scanning transmission electron microscopy revealed the presence of parylene at the Ag-pad PZT interface and within the pores of pad PZT (in failed samples subjected to electric fields). This further dilutes the electrical, mechanical, and electromechanical properties of the pad PZT, which in turn detrimentally influences the pulse echo sensitivity.
ContributorsPeri, Prudhvi Ram (Author) / Dey, Sandwip (Thesis advisor) / Smith, David (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
157604-Thumbnail Image.png
Description
Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at

Computer assisted language learning (CALL) has become increasingly common as a means of helping learners develop essential skills in a second or foreign language. However, while many CALL programs claim to be based on principles of second language acquisition (SLA) theory and research, evaluation of design and learning outcomes at the level of individual CALL exercises is lacking in the existing literature. The following proposed study will explore the design of computer-based vocabulary matching exercises using both written text and images and the effects of various design manipulations on learning outcomes. The study will use eye-tracking to investigate what users attend to on screen as they work through a series of exercises with different configurations of written words and images. It will ask whether manipulation of text and image features and combinations can have an effect on learners’ attention to the various elements, and if so, whether differences in levels of attention results in higher or lower scores for measures of learning. Specifically, eye-tracking data will be compared to post-test scores for recall and recognition of target vocabulary items to look for a correlation between levels of attention to written forms in-task and post-test gains in scores for vocabulary learning.
ContributorsPatchin, Colleen (Author) / Smith, David (Thesis advisor) / Ross, Andrew (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2019