Matching Items (86)
193014-Thumbnail Image.png
Description
The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of

The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of customers, loss of water, costly emergency repairs, and even loss of life. The American Water Works Association’s (AWWA) 2020 “State of the Water Industry” report states the top issue facing the water industry since 2016 is aging infrastructure, with the second being financing for improvements. The industry must find innovative ways to extend asset life and reduce maintenance expenditures. While are many different assets comprise the drinking water industry, pipelines are a major component and often neglected because they are typically buried. Reliability Centered Maintenance (RCM) is a process used to determine the most effective maintenance strategy for an asset, with the ultimate goal being to establish the required function of the asset with the required reliability at the lowest operations and maintenance costs. The RCM philosophy considers Preventive Maintenance, Predictive Maintenance, Condition Based Monitoring, Reactive Maintenance, and Proactive Maintenance techniques in an integrated manner to increase the probability an asset will perform its designed function throughout its design life with minimal maintenance. In addition to determining maintenance tasks, the timely performance of those tasks is crucial. If performed too late an asset may fail; if performed too early, resources that may be used better elsewhere are expended. Utility agencies can save time and money by using RCM analysis for their drinking water infrastructure. This dissertation reviews industries using RCM, discusses the benefits of an RCM analysis, and goes through a case study of an RCM at a large aqueduct in the United States. The dissertation further discusses the consequence of failure of large diameter water pipelines and proposes a regression model to help agencies determine the optimum time to perform maintenance tasks on large diameter prestressed concrete pipelines using RCM analysis.
ContributorsGeisbush, James R (Author) / Ariaratnam, Samuel T (Thesis advisor) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2024
168587-Thumbnail Image.png
Description
The country is facing infrastructure crises simultaneous with a labor shortage in fields related to construction management and engineering. These challenges necessitate better and quicker preparation of the incoming workforce so they are prepared to take on responsibilities with more skill and efficiency than has been expected previously. Educators can

The country is facing infrastructure crises simultaneous with a labor shortage in fields related to construction management and engineering. These challenges necessitate better and quicker preparation of the incoming workforce so they are prepared to take on responsibilities with more skill and efficiency than has been expected previously. Educators can play a key role in equipping the leaders of this upcoming generation to deal with these challenges. If students are expected to graduate with more preparation and expertise, then educators must also adjust the ways in which they teach. There are many ways that these changes can be accomplished, and researchers play a critical role in exploring new classroom techniques and technologies that may improve the way education is delivered. This dissertation focuses on a high-impact emerging technology, augmented reality (AR), as a training mechanism for students that has the potential to play a crucial role in enhancing the way construction education is delivered. First, this research explores what skills and competencies are most frequently reported as critical needs by industry members by thematically coding open-ended responses of construction internship supervisors. Leveraging the results of this data, this research explores the viability of utilizing AR to simulate hands-on training and authentic learning in ways that target these skills and competencies. The research presented in this dissertation consists of a series of subject tests involving custom-developed augmented reality applications. These full-scale, highly interactive construction mixed reality applications are designed to expose students to simulations of high-impact learning experiences but without the recurring costs of physical materials. Student behaviors and performance during these subject tests are thematically coded to reveal student behaviors and perceptions that contribute to learning objectives. The results of this research demonstrate high potential for AR as an educational tool while also suggesting best practices for creating and implementing these types of activities based on surprising and sometimes counterintuitive student behaviors during these AR experiences.
ContributorsMcCord, Kieren (Author) / Ayer, Steven K. (Thesis advisor) / London, Jeremi S. (Committee member) / El Asmar, Mounir (Committee member) / Arizona State University (Publisher)
Created2022
187379-Thumbnail Image.png
Description
The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity,

The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity, and to achieve sustainable development, it is vital to transform conventional construction into a more sustainable model. The research investigated sustainable construction perceptions in Kuwait, a rapidly growing country with a high volume of construction activities. Kuwait has ambitious plans to transition into a more sustainable economic development model, and the construction industry needs to align with these plans. This research aims to identify the characteristics of sustainable construction applications in the Kuwaiti construction market, such as awareness, current perceptions, drivers and barriers, and the construction regulations' impact. The research utilized a qualitative approach to answer research questions and deliver research objectives by conducting eleven Semi-structured interviews with experienced professionals in the Kuwaiti construction market to collect rich data that reflects insights and understandings of the Kuwaiti construction industry. The Thematic analysis of the data resulted in six themes and one sub-theme that presented reflections, insights, and perspectives on sustainable construction perceptions in the Kuwaiti construction market. The research findings reflected poor sustainable construction awareness and poor environmental and social application in the construction industry, the determinant role of construction regulations in promoting sustainable construction. and barriers and drivers to sustainable construction applications. The research concluded with answers to research questions, delivery of research objectives, and an explanation of sustainable construction perceptions in the Kuwaiti construction market.
Contributorsalsalem, mohammad salem (Author) / Duran, Melanie (Thesis advisor) / Chong, Oswald (Committee member) / Sullivan, Kenneth (Committee member) / Grau, David (Committee member) / Arizona State University (Publisher)
Created2023
187709-Thumbnail Image.png
Description
During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts

During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts and social costs; however, there are some obstacles that prevent the implementation and the realization of these alternatives.This research is conducted mainly to evaluate the environmental impacts of open-cut excavation vs. trenchless technology in Egypt, through two main methodologies. Firstly, a field survey that aims to measure knowledge of people working in the Egyptian construction industry of trenchless technology, and the harms caused from keeping utilizing open-cut for installing all kinds of underground utilities. In addition to investigating the reasons behind not relying on trenchless technology as a safe alternative for open-cut in Egypt. Furthermore, in order to compare the greenhouse gases emissions resulted from both open-cut vs trenchless technology, a real case study is applied quantifying the amounts of the resulted greenhouse gases from each method. The results show that greenhouse gases emissions generated from open-cut were extremely higher than that of horizontal directional drilling as a trenchless installation method.
ContributorsKhedr, Ahmed Mossad Saeed Hafez (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2023
193624-Thumbnail Image.png
Description
Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with

Innovative project delivery methods and project management systems have advanced the world of construction engineering and management, yet the benefits of their applications remain not wholly accomplished without accompanying them with the suitable methods of implementation. As integrated delivery methods have arisen from the need for faster project delivery with early teams’ involvement, their benefits are not attained unless they are executed by the most qualified contracting firms for the job and administered following collaborative approaches. More holistically, integrated project management systems support meeting project guidelines while enforcing the social role played by individuals and teams in addressing challenges that influence their technical performance. Thus, the author was one of the 41 team members that developed an innovative IPM framework which is the Integrated Project/Program Management Maturity and Environment Total risk Rating known as IP2M METRR that helps them review their project team environment and levels of system maturity. Like the integrated delivery methods, an IPM framework is not expected to solve challenges on its own unless supported with guidance for practitioners to efficiently implement the framework. Thus, in this dissertation the author aims to address the challenges by studying the implementation of innovative methods for integrated delivery and integrated management in large government-owned engineering construction projects. The objective is to guide the implementation of (1) design-build (D-B) and construction manager-general contractor (CM-GC) methods in the contractor procurement phase and post-award contract administration phase; and (2) earned value management system (integrated project management application) through a paradigm shift in its assessment, using the IP2M METRR, and focusing on the novel sociotechnical aspect. The author studied data from 128 government-owned projects with total worth of about $46.7 U.S. billion, 11 experts, and 215 practitioners; and used mixed-methods research and industry engaging research techniques, including remote research charrettes which the author supported its development and testing and reported on in this dissertation.The contributions of this dissertation include: (1) identifying best practices for D-B and CM-GC contractor procurement, (2) developing D-B and CM-GC contract administration tool selection framework, (3) gauging lessons learned on IP2M METRR application, (4) identifying issues and recommendations in IPM application implementation, (5) validating IP2M METRR framework, and (6) developing and testing industry-engaging research approach.
ContributorsSanboskani, Hala (Author) / El Asmar, Mounir (Thesis advisor) / Grau, David (Thesis advisor) / Gibson, Jr., George E. (Committee member) / Bearup, Wylie (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2024
156839-Thumbnail Image.png
Description
Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the

Buildings continue to take up a significant portion of the global energy consumption, meaning there are significant research opportunities in reducing the energy consumption of the building sector. One widely studied area is waste heat recovery. The purpose of this research is to test a prototype thermogalvanic cell in the form factor of a UK metric brick sized at 215 mm × 102.5 mm × 65 mm for the experimental power output using a copper/copper(II) (Cu/Cu2+) based aqueous electrode. In this study the thermogalvanic brick uses a 0.7 M CuSO4 + 0.1 M H2SO4 aqueous electrolyte with copper electrodes as two of the walls. The other walls of the thermogalvanic brick are made of 5.588 mm (0.22 in) thick acrylic sheet. Internal to the brick, a 0.2 volume fraction minimal surface Schwartz diamond (Schwartz D) structure made of ABS, Polycarbonate-ABS (PCABS), and Polycarbonate-Carbon Fiber (PCCF) was tested to see the effects on the power output of the thermogalvanic brick. By changing the size of the thermogalvanic cell into that of a brick will allow this thermogalvanic cell to become the literal building blocks of green buildings. The thermogalvanic brick was tested by applying a constant power to the strip heater attached to the hot side of the brick, resulting in various ∆T values between 8◦C and 15◦C depending on the material of Schwartz D inside. From this, it was found that a single Cu/Cu2+ thermogalvanic brick containing the PCCF or PCABS Schwartz D performed equivalently well at a 163.8% or 164.9%, respectively, higher normalized power density output than the control brick containing only electrolyte solution.
ContributorsLee, William J. (Author) / Phelan, Patrick (Thesis advisor) / El Asmar, Mounir (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2018
156707-Thumbnail Image.png
Description
The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions

The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions should be a priority. Therefore, in this dissertation, this research examine the relationship between carbon emissions and the factors affecting them from macro and micro perspectives. From a macroscopic perspective, the relationship between carbon dioxide, energy resource consumption, energy prices, GDP (gross domestic product), waste generation, and recycling waste generation in the building and waste sectors has been verified. From a microscopic perspective, the impact of non-permanent electric appliances and stationary and non-stationary occupancy has been investigated. To verify the relationships, various kinds of statistical and data mining techniques were applied, such as the Granger causality test, linear and logarithmic correlation, and regression method. The results show that natural gas and electricity prices are higher than others, as coal impacts their consumption, and electricity and coal consumption were found to cause significant carbon emissions. Also, waste generation and recycling significantly increase and decrease emissions from the waste sector, respectively. Moreover, non-permanent appliances such as desktop computers and monitors consume a lot of electricity, and significant energy saving potential has been shown. Lastly, a linear relationship exists between buildings’ electricity use and total occupancy, but no significant relationship exists between occupancy and thermal loads, such as cooling and heating loads. These findings will potentially provide policymakers with a better understanding of and insights into carbon emission manipulation in the building sector.
ContributorsLee, Seungtaek (Author) / Chong, Oswald (Thesis advisor) / Sullivan, Kenneth (Committee member) / Tang, Pingbo (Committee member) / Arizona State University (Publisher)
Created2018
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
157081-Thumbnail Image.png
Description
The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To

The demand for new highway infrastructure, the need to repair aging infrastructure, and the drive to optimize public expenditures on infrastructure have led transportation agencies toward alternative contracting methods (ACMs) such as design-build (DB) and construction manager/general contractor (CM/GC). U.S. transportation agencies have substantial experience with traditional design-bid-build delivery. To promote ACMs, the Federal Highway Administration and the National Cooperative Highway Research Program (NCRHP) have published ACM guidance documents. However, the published material and research tend to focus on pre-award activities. The need for guidance on ACM post-award activities is confirmed in NCHRP’s request for a guidebook focusing on ACM contract administration (NCHRP 2016).

This dissertation fills the crucial knowledge gap in contract administration functions and tools for DB and CM/GC highway project delivery. First, this research identifies and models contract administration functions in DBB, CM/GC, and DB using integrated definition modeling (IDEF0). Second, this research identifies and analyzes DB and CM/GC tools for contract administration by conducting 30 ACM project case studies involving over 90 ACM practitioners. Recommendations on appropriate use regarding project phase, complexity, and size were gathered from 16 ACM practitioners. Third, the alternative technical concepts tool was studied. Data from 30 DB projects was analyzed to explore the timing of DB procurement and DB initial award performance in relation to the project influence curve. Types of innovations derived from ATCs are discussed. Considerable industry input at multiple stages grounds this research in professional practice.

Results indicate that the involvement of the contractor during the design phase for both DB and CM/GC delivery creates unique contract administration functions that need unique tools. Thirty-six DB and CM/GC tools for contract administration are identified with recommendations for effective implementation. While strong initial award performance is achievable in DB projects, initial award performance in this sample of projects is only loosely tied to the level of percent base design at procurement. Cost savings typically come from multiple ATCs, and innovations tend to be incremental rather than systemic, disruptive, or radical. Opportunity for innovation on DB highway projects is influenced by project characteristics and engaging the DB entity after pre-project planning.
ContributorsPapajohn, Dean (Author) / El Asmar, Mounir (Thesis advisor) / Gibson, G. Edward (Committee member) / Bearup, Wylie (Committee member) / Molenaar, Keith R. (Committee member) / Arizona State University (Publisher)
Created2019