Matching Items (69)
151211-Thumbnail Image.png
Description
CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA

CpG methylation is an essential requirement for the normal development of mammals, but aberrant changes in the methylation can lead to tumor progression and cancer. An in-depth understanding of this phenomenon can provide insights into the mechanism of gene repression. We present a study comparing methylated DNA and normal DNA wrt its persistence length and contour length. Although, previous experiments and studies show no difference between the physical properties of the two, the data collected and interpreted here gives a different picture to the methylation phenomena and its effect on gene silencing. The study was extended to the artificially reconstituted chromatin and its interactions with the methyl CpG binding proteins were also probed.
ContributorsKaur, Parminder (Author) / Lindsay, Stuart (Thesis advisor) / Ros, Robert (Committee member) / Tao, Nongjian (Committee member) / Vaiana, Sara (Committee member) / Beckenstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2012
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
141471-Thumbnail Image.png
Description

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond

What relationships can be understood between resilience and vulnerability in social-ecological systems? In particular, what vulnerabilities are exacerbated or ameliorated by different sets of social practices associated with water management? These questions have been examined primarily through the study of contemporary or recent historic cases. Archaeology extends scientific observation beyond all social memory and can thus illuminate interactions occurring over centuries or millennia. We examined trade-offs of resilience and vulnerability in the changing social, technological, and environmental contexts of three long-term, pre-Hispanic sequences in the U.S. Southwest: the Mimbres area in southwestern New Mexico (AD 650–1450), the Zuni area in northern New Mexico (AD 850–1540), and the Hohokam area in central Arizona (AD 700–1450). In all three arid landscapes, people relied on agricultural systems that depended on physical and social infrastructure that diverted adequate water to agricultural soils. However, investments in infrastructure varied across the cases, as did local environmental conditions. Zuni farming employed a variety of small-scale water control strategies, including centuries of reliance on small runoff agricultural systems; Mimbres fields were primarily watered by small-scale canals feeding floodplain fields; and the Hohokam area had the largest canal system in pre-Hispanic North America. The cases also vary in their historical trajectories: at Zuni, population and resource use remained comparatively stable over centuries, extending into the historic period; in the Mimbres and Hohokam areas, there were major demographic and environmental transformations. Comparisons across these cases thus allow an understanding of factors that promote vulnerability and influence resilience in specific contexts.

ContributorsNelson, Margaret (Author) / Kintigh, Keith (Author) / Abbott, David (Author) / Anderies, John (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010
131295-Thumbnail Image.png
Description
A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition

A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition and integrity undergo significant change. Currently, there is no method to track the effects of these artefactual stresses on the sample tissue to determine any deviations from the actual patient physiology. Without a way to track these changes, pathologists have to blindly trust that the tissue samples they are given are of high quality and fit for molecular analysis; physicians use the analysis to make diagnoses and treatment plans based on the assumption that the samples are valid. A possible way to track the quality of the tissue is by measuring volatile organic compounds (VOCs) released from the samples. VOCs are carbon-based chemicals with high vapor pressure at room temperature. There are over 1,800 known VOCs within humans and a number of these exist in every tissue sample. They are individualized and often indicative of a person’s metabolic condition. For this reason, VOCs are often used for diagnostic purposes. Their usefulness in diagnostics, reflectiveness of a person’s metabolic state, and accessibility lends them to being beneficial for tracking degradation. We hypothesize that there is a relationship between the change in concentration of the volatile organic compounds of a sample, and the molecular quality of a sample. This relationship is what would indicate the accuracy of the tissue quality used for a biopsy in relation to the tissue within the body.
ContributorsSharma, Nandini (Co-author) / Fragoso, Claudia (Co-author) / Grenier, Tyler (Co-author) / Hanson, Abigail (Co-author) / Compton, Carolyn (Thesis director) / Tao, Nongjian (Committee member) / Moakley, George (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
156842-Thumbnail Image.png
Description
Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these

Most drugs work by binding to receptors on the cell surface. These receptors can then carry the message into the cell and have a wide array of results. However, studying how fast the binding is can be difficult. Current methods involve extracting the receptor and labeling them, but both these steps have issues. Previous works found that binding on the cell surface is accompanied with a small change in cell size, generally an increase. They have also developed an algorithm that can track these small changes without a label using a simple bright field microscope. Here, this relationship is further explored by comparing edge tracking results to a more widely used method, surface plasmon resonance. The kinetic constants found from the two methods are in agreement. No corrections or manipulations were needed to create agreement. The Bland-Altman plots shows that the error between the two methods is about 0.009 s-1. This is about the same error between cells, making it a non-dominant source of error.
ContributorsHunt, Ashley (Author) / Tao, Nongjian (Thesis advisor) / Ros, Alexandra (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2018
156784-Thumbnail Image.png
Description
Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane

Measuring molecular interaction with membrane proteins is critical for understanding cellular functions, validating biomarkers and screening drugs. Despite the importance, developing such a capability has been a difficult challenge, especially for small molecules binding to membrane proteins in their native cellular environment. The current mainstream practice is to isolate membrane proteins from the cell membranes, which is difficult and often lead to the loss of their native structures and functions. In this thesis, novel detection methods for in situ quantification of molecular interactions with membrane proteins are described.

First, a label-free surface plasmon resonance imaging (SPRi) platform is developed for the in situ detection of the molecular interactions between membrane protein drug target and its specific antibody drug molecule on cell surface. With this method, the binding kinetics of the drug-target interaction is quantified for drug evaluation and the receptor density on the cell surface is also determined.

Second, a label-free mechanically amplification detection method coupled with a microfluidic device is developed for the detection of both large and small molecules on single cells. Using this method, four major types of transmembrane proteins, including glycoproteins, ion channels, G-protein coupled receptors (GPCRs) and tyrosine kinase receptors on single whole cells are studied with their specific drug molecules. The basic principle of this method is established by developing a thermodynamic model to express the binding-induced nanometer-scale cellular deformation in terms of membrane protein density and cellular mechanical properties. Experiments are carried out to validate the model.

Last, by tracking the cell membrane edge deformation, molecular binding induced downstream event – granule exocytosis is measured with a dual-optical imaging system. Using this method, the single granule exocytosis events in single cells are monitored and the temporal-spatial distribution of the granule fusion-induced cell membrane deformation are mapped. Different patterns of granule release are resolved, including multiple release events occurring close in time and position. The label-free cell membrane deformation tracking method was validated with the simultaneous fluorescence recording. And the simultaneous cell membrane deformation detection and fluorescence recording allow the study of the propagation of the granule release-induced membrane deformation along cell surfaces.
ContributorsZhang, Fenni (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Borges, Chad (Committee member) / Jing, Tianwei (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
156786-Thumbnail Image.png
Description
Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and

Proteins play a central role to human body and biological activities. As powerful tools for protein detections, many surface plasmon resonance based techniques have been developed to enhance the sensitivity. However, sensitivity is not the only final goal. As a biosensor, four things really matter: sensitivity, specificity, resolution (temporal/spatial) and throughput.

This dissertation presents several works on developing novel plasmonic based techniques for protein detections on the last two aspects to extend the application field. A fast electrochemically controlled plasmonic detection technique is first developed with the capability of monitoring electrochemical signal with nanosecond response time. The study reveals that the conformational gating of electron transfer in a redox protein (cytochrome c) takes place over a broad range of time scales (sub-µs to ms). The second platform integrates ultra-low volume piezoelectric liquid dispensing and plasmonic imaging detection to monitor different protein binding processes simultaneously with low sample cost. Experiment demonstrates the system can observe binding kinetics in 10×10 microarray of 6 nL droplet, with variations of kinetic rate constants among spots less than ±5%. A focused plasmonic imaging system with bi-cell algorithm is also proposed for spatial resolution enhancement. The two operation modes, scanning mode and focus mode, can be applied for different purposes. Measurement of bacterial aggregation demonstrates the higher spatial resolution. Detections of polystyrene beads binding and 50 nm gold nanoparticles oscillation show a high signal to noise ratio of the system.

The real properties of protein rely on its dynamic personalities. The above works shed light upon fast and high throughput detection of protein kinetics, and enable more applications for plasmonic imaging techniques. It is anticipated that such methods will help to invoke a new surge to unveil the mysteries of biological activities and chemical process.
ContributorsWang, Yan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2018
157593-Thumbnail Image.png
Description
Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air

Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.

Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.

The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases.
ContributorsDu, Zijian (Author) / Tao, Nongjian (Thesis advisor) / Goryll, Michael (Committee member) / Herckes, Pierre (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2019
154668-Thumbnail Image.png
Description
Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics

Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics which encompasses four applications. Surface plasmon resonance microscopy based optical method has been applied to image intracellular motions and cell mechanical motion. This label-free technique enables ultrafast imaging with extremely high sensitivity in detecting cell deformation. The technique was first applied to study intracellular transportation. Organelle transportation process and displacement steps of motor protein can be tracked using this method. The second application is to study heterogeneous subcellular membrane displacement induced by membrane potential (de)polarization. The application can map the amplitude and direction of cell deformation. The electromechanical coupling of mammalian cells was also observed. The third application is for imaging electrical activity in single cells with sub-millisecond resolution. This technique can fast record actions potentials and also resolve the fast initiation and propagation of electromechanical signals within single neurons. Bright-field optical imaging approach has been applied to the mechanical wave visualization that associated with action potential in the fourth application. Neuron-to-neuron viability of membrane displacement was revealed and heterogeneous subcellular response was observed.

All these works shed light on the possibility of using optical approaches to study millisecond-scale and sub-nanometer-scale mechanical motions. These studies revealed ultrafast and ultra-small mechanical motions at the cellular level, including motor protein-driven motions and electromechanical coupled motions. The observations will help understand cell mechanics and its biological functions. These optical approaches will also become powerful tools for elucidating the interplay between biological and physical functions.
ContributorsYang, Yunze (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / Goryll, Michael (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2016