Matching Items (99)
190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
ContributorsMancuso, Marina (Author) / Milner, Fabio A (Thesis advisor) / Kuang, Yang (Committee member) / Kostelich, Eric (Committee member) / Eikenberry, Steffen (Committee member) / Manore, Carrie (Committee member) / Arizona State University (Publisher)
Created2023
189213-Thumbnail Image.png
Description
This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully

This work presents a thorough analysis of reconstruction of global wave fields (governed by the inhomogeneous wave equation and the Maxwell vector wave equation) from sensor time series data of the wave field. Three major problems are considered. First, an analysis of circumstances under which wave fields can be fully reconstructed from a network of fixed-location sensors is presented. It is proven that, in many cases, wave fields can be fully reconstructed from a single sensor, but that such reconstructions can be sensitive to small perturbations in sensor placement. Generally, multiple sensors are necessary. The next problem considered is how to obtain a global approximation of an electromagnetic wave field in the presence of an amplifying noisy current density from sensor time series data. This type of noise, described in terms of a cylindrical Wiener process, creates a nonequilibrium system, derived from Maxwell’s equations, where variance increases with time. In this noisy system, longer observation times do not generally provide more accurate estimates of the field coefficients. The mean squared error of the estimates can be decomposed into a sum of the squared bias and the variance. As the observation time $\tau$ increases, the bias decreases as $\mathcal{O}(1/\tau)$ but the variance increases as $\mathcal{O}(\tau)$. The contrasting time scales imply the existence of an ``optimal'' observing time (the bias-variance tradeoff). An iterative algorithm is developed to construct global approximations of the electric field using the optimal observing times. Lastly, the effect of sensor acceleration is considered. When the sensor location is fixed, measurements of wave fields composed of plane waves are almost periodic and so can be written in terms of a standard Fourier basis. When the sensor is accelerating, the resulting time series is no longer almost periodic. This phenomenon is related to the Doppler effect, where a time transformation must be performed to obtain the frequency and amplitude information from the time series data. To obtain frequency and amplitude information from accelerating sensor time series data in a general inhomogeneous medium, a randomized algorithm is presented. The algorithm is analyzed and example wave fields are reconstructed.
ContributorsBarclay, Bryce Matthew (Author) / Mahalov, Alex (Thesis advisor) / Kostelich, Eric J (Thesis advisor) / Moustaoui, Mohamed (Committee member) / Motsch, Sebastien (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2023
171849-Thumbnail Image.png
Description
This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form

This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form discontinuous Galerkin spectral element method framework with shock capturing. In the study on incompressible wake flows, three dominant coherent vortical motions are identified in the wake: the vortex shedding motion with the frequency of St=0.27, the bubble pumping motion with St=0.02, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequencies St=0.002 and 0.005. The very-low-frequency motion is associated with a slow precession of the wake barycenter. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, with the detachment location rotating continuously and making a full circle over one vortex shedding period. The VLF radial motion with St=0.005 originates as m = 1 mode, but later transitions into m = 2 mode in the intermediate wake. Proper orthogonaldecomposition (POD) and dynamic mode decomposition (DMD) are further performed to analyze the spatial structure associated with the dominant coherent motions. Results of the POD and DMD analysis are consistent with the results of the azimuthal Fourier analysis. To extend the current incompressible code to be able to solve compressible flows, a computational methodology is developed using a high-order approximation for the compressible Navier-Stokes equations with discontinuities. The methodology is based on a split discretization framework with a summation-by-part operator. An entropy viscosity method and a subcell finite volume method are implemented to capture discontinuities. The developed high-order split-form with shock-capturing methodology is subject to a series of evaluation on cases from subsonic to hypersonic, from one-dimensional to three dimensional. The Taylor-Green vortex case and the supersonic sphere wake case show the capability to handle three-dimensional turbulent flows without and with the presence of shocks. It is also shown that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.
ContributorsZhang, Fengrui (Author) / Peet, Yulia (Thesis advisor) / Kostelich, Eric (Committee member) / Kim, Jeonglae (Committee member) / Hermann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2022
Description

In the last two decades, fantasy sports have grown massively in popularity. Fantasy football in particular is the most popular fantasy sport in the United States. People spend hours upon hours every year building, researching, and perfecting their teams to compete with others for money or bragging rights. One problem,

In the last two decades, fantasy sports have grown massively in popularity. Fantasy football in particular is the most popular fantasy sport in the United States. People spend hours upon hours every year building, researching, and perfecting their teams to compete with others for money or bragging rights. One problem, however, is that National Football League (NFL) players are human and will not perform the same as they did last week or last season. Because of this, there is a need to create a machine learning model to help predict when players will have a tough game or when they can perform above average. This report discusses the history and science of fantasy football, gathering large amounts of player data, manipulating the information to create more insightful data points, creating a machine learning model, and how to use this tool in a real-world situation. The initial model created significantly accurate predictions for quarterbacks and running backs but not receivers and tight ends. Improvements significantly increased the accuracy by reducing the mean average error to below one for all positions, resulting in a successful model for all four positions.

ContributorsCase, Spencer (Author) / Johnson, Jarod (Co-author) / Kostelich, Eric (Thesis director) / Zhuang, Houlong (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

The main purpose of this project is to create a method for determining the absolute position of an accelerometer. Acceleration and angular speed were obtained from an accelerometer attached to a vehicle as it moves around. As the vehicle moves to collect information the orientation of the accelerometer changes, so

The main purpose of this project is to create a method for determining the absolute position of an accelerometer. Acceleration and angular speed were obtained from an accelerometer attached to a vehicle as it moves around. As the vehicle moves to collect information the orientation of the accelerometer changes, so a rotation matrix is applied to the data based on the angular change at each time. The angular change and distance are obtained by using the trapezoidal approximation of the integrals. This method was first validated by using simple sets of "true" data which are explicitly known sets of data to compare the results to. Then, an analysis of how different time steps and levels of noise affect the error of the results was performed to determine the optimal time step of 0.1 sec that was then used for the actual tests. The tests that were performed were: a stationary test for uses of calibration, a straight line test to verify a simple test, and a closed loop test to test the accuracy. The graphs for these tests give no indication of the actual paths, so the final results can only show that the data from the accelerometer is too noisy and inaccurate for this method to be used by this sensor. The future work would be to test different ways to get more accurate data and then use it to verify this methods. These ways could include using more sensors to interpolate the data, reducing noise by using a different sensor, or adding a filter. Then, if this method is considered accurate enough, it could be implemented into control systems.

ContributorsHorner, Devon (Author) / Kostelich, Eric (Thesis director) / Crook, Sharon (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2023-05
Description

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural land suitability under climate change. In this paper, I relate predicted climate changes to yield for three major United States crops, namely corn, soybeans, and wheat, using a moderate emissions scenario. By adopting data-driven machine learning approaches, I used the following machine learning methods: random forest (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN) to perform comparative analysis and ensemble methodology. I omitted the western US due to the region's susceptibility to water stress and the prevalence of artificial irrigation as a means to compensate for dry conditions. By considering only climate, the model's results suggest an ensemble mean decline in crop yield of 23.4\% for corn, 19.1\% for soybeans, and 7.8\% for wheat between the years of 2017 and 2100. These results emphasize potential negative impacts of climate change on the current agricultural industry as a result of shifting bio-climactic conditions.

ContributorsSwarup, Shray (Author) / Eikenberry, Steffen (Thesis director) / Mahalov, Alex (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
168448-Thumbnail Image.png
Description
High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because they are practical and efficient to develop and implement. Although

High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because they are practical and efficient to develop and implement. Although model errors (biases) are inevitable for reduced-order models, these models can still be proven useful to develop real-world applications. Evaluation and validation for idealized models are indispensable to serve the mission of developing useful applications. Data assimilation and uncertainty quantification can provide a way to assess the performance of a reduced-order model. Real data and a dynamical model are combined together in a data assimilation framework to generate corrected model forecasts of a system. Uncertainties in model forecasts and observations are also quantified in a data assimilation cycle to provide optimal updates that are representative of the real dynamics. In this research, data assimilation is applied to assess the performance of two reduced-order models. The first model is developed for predicting prostate cancer treatment response under intermittent androgen suppression therapy. A sequential data assimilation scheme, the ensemble Kalman filter (EnKF), is used to quantify uncertainties in model predictions using clinical data of individual patients provided by Vancouver Prostate Center. The second model is developed to study what causes the changes of the state of stratospheric polar vortex. Two data assimilation schemes: EnKF and ES-MDA (ensemble smoother with multiple data assimilation), are used to validate the qualitative properties of the model using ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis data. In both studies, the reduced-order model is able to reproduce the data patterns and provide insights to understand the underlying mechanism. However, significant model errors are also diagnosed for both models from the results of data assimilation schemes, which suggests specific improvements of the reduced-order models.
ContributorsWu, Zhimin (Author) / Kostelich, Eric (Thesis advisor) / Moustaoui, Mohamed (Thesis advisor) / Jones, Chris (Committee member) / Espanol, Malena (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2021
161972-Thumbnail Image.png
Description
Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more

Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more timely and underexplored problems. In SB's entire history, mathematical modeling has always been an indispensable approach to predict the experimental outcomes, improve experimental design and obtain mechanism-understanding of the biological systems. \textit{Escherichia coli} (\textit{E. coli}) is one of the most important experimental platforms, its growth dynamics is the major research objective in this dissertation. Chapter 2 employs a reaction-diffusion model to predict the \textit{E. coli} colony growth on a semi-solid agar plate under multiple controls. In that chapter, a density-dependent diffusion model with non-monotonic growth to capture the colony's non-linear growth profile is introduced. Findings of the new model to experimental data are compared and contrasted with those from other proposed models. In addition, the cross-sectional profile of the colony are computed and compared with experimental data. \textit{E. coli} colony is also used to perform spatial patterns driven by designed gene circuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation results are presented. Specifically, a series of partial differential equation (PDE) models are developed to describe the pattern formation driven by the MINPAC circuit. Model simulations of the patterns based on different experimental conditions and numerical analysis of the models to obtain a deeper understanding of the mechanisms are performed and discussed. Mathematical analysis of the simplified models, including traveling wave analysis and local stability analysis, is also presented and used to explore the control strategies of the pattern formation. The interaction between the gene circuit and the host \textit{E. coli} may be crucial and even greatly affect the experimental outcomes. Chapter 4 focuses on the growth feedback between the circuit and the host cell under different nutrient conditions. Two ordinary differential equation (ODE) models are developed to describe such feedback with nutrient variation. Preliminary results on data fitting using both two models and the model dynamical analysis are included.
ContributorsHe, Changhan (Author) / Kuang, Yang (Thesis advisor) / Wang, Xiao (Committee member) / Kostelich, Eric (Committee member) / Tian, Xiaojun (Committee member) / Gumel, Abba (Committee member) / Arizona State University (Publisher)
Created2021
191019-Thumbnail Image.png
Description
This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and

This work focuses on a novel approach to combine electrical current with cyanobacterial technology, called microbial electrophotosynthesis (MEPS). It involves using genetically modified PSII-less Synechocystis PCC 6803 cells to avoid photoinhibition, a problem that hinders green energy. In the work, a cathodic electron delivery system is employed for growth and synthesis. Photoinhibition leads to the dissipation energy and lower yield, and is a major obstacle to preventing green energy from competing with fossil fuels. However, the urgent need for alternative energy sources is driven by soaring energy consumption and rising atmospheric carbon dioxide levels. When developed, MEPS can contribute to a carbon capture technology while helping with energy demands. It is thought that if PSII electron flux can be replaced with an alternative source photosynthesis could be enhanced for more effective production. MEPS has the potential to address these challenges by serving as a carbon capture technology while meeting energy demands. The idea is to replace PSII electron flux with an alternative source, which can be enhanced for higher yields in light intensities not tolerated with PSII. This research specifically focuses on creating the initiation of electron flux between the cathode and the MEPS cells while controlling and measuring the system in real time. The successful proof-of-concept work shows that MEPS can indeed generate high-light-dependent current at intensities up to 2050 µmol photons m^‒2 s^‒1, delivering 113 µmol electrons h^‒1 mg-chl^‒1. The results were further developed to characterize redox tuning for electron delivery of flux to the photosynthetic electron transport chain and redox-based kinetic analysis to model the limitations of the MEPS system.
ContributorsLewis, Christine Michelle (Author) / Torres, César I (Thesis advisor) / Fromme, Petra (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2023
Description
Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma

Glioblastoma Multiforme is a prevalent and aggressive brain tumor. It has an average 5-year survival rate of 6% and average survival time of 14 months. Using patient-specific MRI data from the Barrow Neurological Institute, this thesis investigates the impact of parameter manipulation on reaction-diffusion models for predicting and simulating glioblastoma growth. The study aims to explore key factors influencing tumor morphology and to contribute to enhancing prediction techniques for treatment.
ContributorsShayegan, Tara (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2024-05