Matching Items (72)
134965-Thumbnail Image.png
Description
Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for

Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for all individuals involved in the patient's life. Although the causes of this condition are largely unknown, a wide variety of social and cognitive therapies have been used to reduce symptom severity, one of which is Mindfulness-Based Stress Reduction (MBSR). Mindfulness is the act of being aware on purpose to whatever is being experienced in the present moment with non-judgment and receptivity. MBSR has been used to bring greater awareness to sensations, thoughts and emotions with the result being reduced reactivity and increased purposeful responsiveness. It is therefore the aim of this study to address the use of an 8-week Mindfulness-Based Stress Reduction in adolescents with clinical Asperger's Syndrome to reduce reactive tendencies. This study will utilize a randomized control group of waitlisted participants given MBSR informational material and a practicing MBSR group. Post-MBSR Parent Global Impressions-III (PGI-III) and Social Responsiveness Scale scores are hypothesized to be improved in MBSR group and unaffected in the control for behavioral markers with no change in core autistic symptoms. Daily average cortisol response is also expected to decrease in the experimental group with unaffected levels in the control.
ContributorsBrzezinski, Molly Alexandra (Author) / Smith, Brian (Thesis director) / Sebren, Ann (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134984-Thumbnail Image.png
Description
The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical

The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical alteration on the mice to enable video tracking. These limitations were overcame by creating an odorized hole-board to allow for systematic and automatic recording of olfactory behavior in mice. A cohort of five male mice were utilized in these experiments and the responses to the odor of strawberries, a diet staple of wile mice, were examined. Experiment 1 showed that free-feeding mice exhibit a preference to locations with strawberry (over control locations), even when these locations can only be identified using olfaction. This preference habituates within a trial but not across days. Experiment 2 showed that strawberry odor without reward causes habituation or extinction to the odor both within trials and across days. From these experiments, it can be concluded that mice innately explore strawberry odor and this can be exploited to the study odor habituation using an odorized hole-board.
ContributorsMa, Jason (Author) / Smith, Brian (Thesis director) / Gerkin, Richard (Committee member) / Oddo, Salvatore (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135022-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine

Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine tyramine as an important factor underlying this form of learning in honey bees. We show that dsRNA targeted to disrupt the tyramine receptors, specifically affects latent inhibition but not excitatory associative conditioning. Our results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian (Thesis director) / Wang, Ying (Committee member) / Sinakevitch, Irina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134697-Thumbnail Image.png
Description
This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary

This paper begins by exploring the prior research that has shown how eating a plant-based diet can affect the human body. Some of these effects include: improved mood, energy levels, gut health, alkalized urine pH, as well as, lowering the risk of hormonal imbalance, kidney stones, diabetes, cancer, and coronary artery disease. The worries that generally accompany eating a fully vegan diet, which include, malnutrition and protein deficiency, are also addressed in the background research. In attempt to build upon previous research, a weeklong experiment was conducted testing 3 different factors, which include: gut health, improved mood, and urine pH. Mood states were measured quantifiably using a POMS (profile of mood states) test. Gut health was measured using several factors, including consistency and frequency of bowel movements, as well as, GI discomfort. Two 24-hour urine samples were collected from each of the subjects to compare the pH of their urine before and after the study. The sample size of this study included 15 healthy, non-smoking, subjects, between 18-30 years of age. The subjects were split up into 3 stratified random samples, including, an omnivore control group, vegan control group, and experimental vegan group. The experimental vegans had eaten meat/eggs/dairy regularly for their whole lives before the start of the study, and had consented to eating a vegan diet for the entirety of one week. While the data from the control groups remained mostly constant as predicted, the results from the experimental group were shown to have a significantly better mood (P<0.05) after one week, as well as, a significantly higher urine pH (P < 0.025) than they did before the study. However, the experimental group did not show a significant change in stool frequency, consistency, or GI discomfort within one week. The vegan control group, which included subjects who had eaten a plant-based diet for 1-3 years, had much better gut health scores. This leads us to believe that the vegan gut microbiome takes much longer to transform into than just one week unlike urine pH and mood, which can take as little as one week. These findings warrant further investigation.
ContributorsMacias, Lindsey Kaori (Author) / Johnston, Carol (Thesis director) / Katsanos, Christos (Committee member) / Harrington Bioengineering Program (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135150-Thumbnail Image.png
Description
In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory

In Apis mellifera, gustatory responsiveness to sucrose is a good indicator of learning ability \u2014 in that individuals with high sucrose responsiveness will typically form faster, longer-lasting associations with conditioned stimulus than individuals with a low sucrose responsiveness. The purpose of this study was to determine whether experience with olfactory conditioning had lasting effects on gustatory responsiveness. Groups were placed in an environment that would facilitate association of an odor to a sucrose reward, tested for retention, then tested for gustatory responsiveness. Control groups underwent the same testing schedule, but were not exposed to odor in the first environment. There was no significant difference in gustatory responsiveness between the two groups. Mann-Whitney tests were used to analyze the results, and though the mean GRS score was lower among the treatment group there was no significant trend, possibly due to small sample sizes.
ContributorsSeemann, J. H. (Author) / Amdam, Gro (Thesis director) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
168687-Thumbnail Image.png
Description
Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain

Free coenzyme A (CoASH) carries acyl groups for the tricarboxylic acid (TCA) cycle and fatty acid metabolism, and donates acyl groups for protein posttranslational modifications. Cellular de novo CoASH synthesis starts with a pantothenate kinase (PANK1-3) phosphorylating pantothenate (vitamin B5). Mutations in PANK2 cause a subtype of neurodegeneration with brain iron accumulation (NBIA). The PANKs have differential subcellular distribution and regulatory properties. However, the purpose of each PANK has remained obscure, with knockout mouse models presenting with mild phenotypes unless challenged with a high-fat diet. Based on PANK2’s known activation by palmitoylcarnitine, the PANK2-deficient cells were challenged with palmitic acid (PAL) added to glucose-containing media. The high nutrient mixture generated a surprising “starvation” profile of reduced proliferation, low ATP, AMPK activation, and autophagy upregulation in PANK2-deficient PAL-challenged cells. Further experiments showed that fatty acids accumulated and that PANK2-deficient cells had reduced respiration when provided with palmitoylcarnitine as a substrate, seemingly due to an impaired ability to oxidize fatty acids during PAL-induced Randle Cycle activation. Intriguingly, whole-cell CoASH levels remained stable despite the PAL-induced starvation phenotype, and increasing CoASH via PANK1β overexpression did not rescue the phenotype, demonstrating a unique role for PANK2 in fatty acid metabolism. Even though a direct CoASH deficiency was not detected, there were changes in short chain CoA-derivatives, including acetyl-CoA, succinyl-CoA, and butyryl-CoA, as well as evidence of impaired TCA cycle function. These impairments in both the TCA cycle and fatty acid oxidation implicate a role for PANK2 in regulating mitochondria CoA dynamics.
ContributorsNordlie, Sandra Maria (Author) / Kruer, Michael C (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Padilla Lopez, Sergio (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2022
190774-Thumbnail Image.png
Description
This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA

This dissertation research project developed as an urgent response to physical inactivity, which has resulted in increased rates of obesity, diabetes, and metabolic disease worldwide. Incorporating enough daily physical activity (PA) is challenging for most people. This research aims to modulate the brain's reward systems to increase motivation for PA and, thus, slow the rapid increase in sedentary lifestyles. Transcranial direct current stimulation (tDCS) involves brain neuromodulation by facilitating or inhibiting spontaneous neural activity. tDCS applied to the dorsolateral prefrontal cortex (DLPFC) increases dopamine release in the striatum, an area of the brain involved in the reward–motivation pathways. I propose that a repeated intervention, consisting of tDCS applied to the DLPFC followed by a short walking exercise stimulus, enhances motivation for PA and daily PA levels in healthy adults. Results showed that using tDCS followed by short-duration walking exercise may enhance daily PA levels in low-physically active participants but may not have similar effects on those with higher levels of daily PA. Moreover, there was a significant effect on increasing intrinsic motivation for PA in males, but there were no sex-related differences in PA. These effects were not observed during a 2-week follow-up period of the study after the intervention was discontinued. Further research is needed to confirm and continue exploring the effects of tDCS on motivation for PA in larger cohorts of sedentary populations. This novel research will lead to a cascade of new evidence-based technological applications that increase PA by employing approaches rooted in biology.
ContributorsRuiz Tejada, Anaissa (Author) / Katsanos, Christos (Thesis advisor) / Neisewander, Janet (Committee member) / Sadleir, Rosalind (Committee member) / Buman, Matthew (Committee member) / Arizona State University (Publisher)
Created2023
Description

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which

Understanding learning in fruit flies (D. melanogaster) can lead to many important discoveries about learning in humans due to the large overlap of shared DNA and the appearance of the same diseases in both species. Fruit flies have already been test subjects for many influential research experiments, some of which earned Nobel Prizes. This study seeks to investigate inhibitory conditioning in a way that differs from the traditional forward pairing inhibitory conditioning. Specifically, this experiment aims to establish inhibitory learning in fruit flies using backward association. The results show that when fruit flies are trained using backward conditioning as opposed to forward conditioning, there is a pattern of preference that differs substantially from the results showing an aversion to the associated odor in forward conditioning. When comparing the data using Two-Factor ANOVA of forward versus backward conditioning, it clearly indicates that the results are significant. Simply by altering the temporal placement of an unconditioned stimulus and a conditioned stimulus, the fruit flies learn significantly differently, switching from an aversion to the paired odor to a preference. Based on these results, fruit flies can be considered capable of inhibitory learning via backward pairing. Further research will consider whether responses become stronger after more repetitions of the training, and summation and retardation tests can be done in order to confirm that the response is, in fact, due to inhibitory conditioning and not just habituation.

ContributorsLawrence, Heidi (Author) / Smith, Brian (Thesis director) / de Belle, John (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops and has been shown to be detrimental to physiological processes that are key to honey bee foraging, such as digestion and learning. This study seeks to investigate how Pristine® exposure affects the amount of water, nectar, and pollen that honey bees collect. Colonies were fed either plain pollen patties or pollen patties containing 23 ppm Pristine®. Exposure to fungicide had no significant effect on corbicular pollen mass, the crop volumes of nectar or water foragers, or the proportions of foragers collecting different substances. There was a significantly higher sugar concentration in the crop of Pristine®-exposed nectar foragers (43.6%, 95% CI [38.8, 48.4]) compared to control nectar foragers (36.3%, 95% CI [31.9, 40.6]). The higher sugar concentration in the nectar of Pristine®-treated bees could indicate that the agrochemical decreases sucrose responsiveness or nutritional status in bees. Alternatively, fungicide exposure may increase the amount of sugar that bees need to make it back to the hive. Based on these results, it would appear that fungicides like Pristine® do not strongly affect the amounts of substances that honey bees collect, but it is still highly plausible that treated bees forage more slowly or with lower return rates.

ContributorsChester, Elise (Author) / Harrison, Jon (Thesis director) / DesJardins, Nicole (Committee member) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description
Active sensing is a sensory phenomenon in which organisms use self-generated energy to examine their surroundings. This experiment strives to better understand active sensing in honeybees, predicting that active sensing may display itself primarily through antennae movement and that preventing antennae movement may result in differences in electroantennogram dose-response curves

Active sensing is a sensory phenomenon in which organisms use self-generated energy to examine their surroundings. This experiment strives to better understand active sensing in honeybees, predicting that active sensing may display itself primarily through antennae movement and that preventing antennae movement may result in differences in electroantennogram dose-response curves and associative learning plasticity. This will be done by examining changes in amplitude in electroantennogram response in both fixed-antenna and free-antenna bees over the course of a differential training protocol that establishes learned behavior discrimination.
ContributorsLei, Harry (Author) / Smith, Brian (Thesis director) / Albin-Brooks, Christopher (Committee member) / Barrett, The Honors College (Contributor)
Created2023-05