Matching Items (77)
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137493-Thumbnail Image.png
DescriptionThis paper provides an analysis of the differences in impacts made by companies that promote their sustainability efforts. A comparison of companies reveals that the ones with greater supply chain influence and larger consumer bases can make more concrete progress in terms of accomplishment for the sustainability realm.
ContributorsBeaubien, Courtney Lynn (Author) / Anderies, John (Thesis director) / Allenby, Brad (Committee member) / Janssen, Marco (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
135630-Thumbnail Image.png
Description
Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural

Climate change presents the urgent need for effective sustainable water management that is capable of preserving natural resources while maintaining economical stability. States like California rely heavily on groundwater pumping for agricultural use, contributing to land subsidence and insufficient returns to water resources. The recent California drought has impacted agricultural production of certain crops. In this thesis, we present an agent-based model of farmers adapting to drought conditions by making crop choice decisions, much like the decisions Californian farmers have made. We use the Netlogo platform to capture the 2D spatial view of an agricultural system with changes in annual rainfall due to drought conditions. The goal of this model is to understand some of the simple rules farmers may follow to self-govern their consumption of a water resource. Farmer agents make their crop decisions based on deficit irrigation crop production function and a net present value discount rate. The farmers choose between a thirsty crop with a high production cost and a dry crop with a low production cost. Simulations results show that farmers switch crops in accordance with limited water and land resources. Farmers can maintain profit and yield by following simple rules of crop switching based on future yields and optimal irrigation. In drought conditions, individual agents expecting lower annual rainfall were able to increase their total profits. The maintenance of crop yield and profit is evidence of successful adaptation when farmers switch to crops that require less water.
ContributorsGokool, Rachael Shanta (Author) / Janssen, Marco (Thesis director) / Eakin, Hallie (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131788-Thumbnail Image.png
Description
Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power.

Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power. Guatemala and Peru, to a lesser extent, have well organized and powerful organizations that make up their industry. However, Ecuador has a significantly less organized organization. At their core, each country has a similar structure. There is one organization on the national level that watches out for the industry as a whole. Underneath that, there are smaller, often regional organizations made up of cooperatives pooling their resources for export. They function in similar ways as the national organizations, but have less reach. At the bottom, there are individual cooperatives and independent farmers. These cooperatives do not have much reach or connection to international markets.
ContributorsChabin, James Edward (Author) / Janssen, Marco (Thesis director) / Taylor, Keith (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
134493-Thumbnail Image.jpg
Description
Fruit flies show a strong attraction to fruit odors. Most fruit odors, including strawberry scent, are complex multimolecular mixtures comprised of many chemically distinct constituents. How animals are able to process these mixtures and derive behaviorally relevant information is largely unknown. A new procedure was created to test odor

Fruit flies show a strong attraction to fruit odors. Most fruit odors, including strawberry scent, are complex multimolecular mixtures comprised of many chemically distinct constituents. How animals are able to process these mixtures and derive behaviorally relevant information is largely unknown. A new procedure was created to test odor preference for Heisenberg canton-s strain of Drosophila melanogaster. 30 flies were cold anesthetized at 4.2°C for 30 minutes and then placed in a testing arena. After acclimating for 45 minutes, the flies were exposed to two sources of air, one with ripe strawberry odor and one with only humidified air. Images were captured every minute for an hour and a preference index was calculated for every 10th image. The Drosophila had a positive average preference for the strawberry odor. Five out of six trials showed a general increase in odor preference over the course of the trial. While there was a generally positive trend for average preference over time, there was not a significant increase in average odor preference from time 1 to time 60. The data indicates that Drosophila show a preference for strawberry odor over humidified air, and we propose to extend this test to investigate how Drosophila process and react to complex odors and their chemical constituents.
ContributorsSteinmetz, Kyle J (Author) / Smith, Brian (Thesis director) / Jernigan, Chris (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134503-Thumbnail Image.png
Description
Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature

Recent data suggests that olfactory input is important for antennal lobe development in honey bees. Chronic association of a single odor to food resources during crucial stages of development results in delayed antennal lobe development for mature foraging bees. The antennal lobes of these bees instead closely resemble an immature network observed in young, newly emerged bees. Using an odor stimuli variance assay, learning and memory tests can be used to explore how well honey bees discriminate single odors within complex odor mixtures. Here we are validating two different odor mixtures, a Brassica rapa floral blend and a second replicate mixture composed of common molecularly dissimilar odors. Odors in each mixture are either held constant or varied in concentration over 16 conditioning trials. Subsequent memory tests are performed two hours later to observe the ability of bees to distinguish and recognize specific odor components in each mixture. So far in our assay we find high rates of generalization for both odor mixtures. In general, more bees responded to all odors in the replicate treatment group over the Brassica treatment group. Additionally, bees in the Brassica treatment group did not respond to the target odor. More data is being collected to validate this assay. In future studies, I propose to apply this behavioral assay to bees with an altered olfactory developmental in order to see the functional impacts of this chronic odor association treatment.
ContributorsHalby, Rachael (Author) / Smith, Brian (Thesis director) / Jernigan, Christopher (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134965-Thumbnail Image.png
Description
Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for

Asperger's syndrome is a high-functioning subset of Autism Spectrum Disorders (ASD). Diagnosed patients often lack refined social skills but possess a normal level of cognitive skills without delay in language development. These deficient social skills can impact the ability to find and maintain a job, which can be burdensome for all individuals involved in the patient's life. Although the causes of this condition are largely unknown, a wide variety of social and cognitive therapies have been used to reduce symptom severity, one of which is Mindfulness-Based Stress Reduction (MBSR). Mindfulness is the act of being aware on purpose to whatever is being experienced in the present moment with non-judgment and receptivity. MBSR has been used to bring greater awareness to sensations, thoughts and emotions with the result being reduced reactivity and increased purposeful responsiveness. It is therefore the aim of this study to address the use of an 8-week Mindfulness-Based Stress Reduction in adolescents with clinical Asperger's Syndrome to reduce reactive tendencies. This study will utilize a randomized control group of waitlisted participants given MBSR informational material and a practicing MBSR group. Post-MBSR Parent Global Impressions-III (PGI-III) and Social Responsiveness Scale scores are hypothesized to be improved in MBSR group and unaffected in the control for behavioral markers with no change in core autistic symptoms. Daily average cortisol response is also expected to decrease in the experimental group with unaffected levels in the control.
ContributorsBrzezinski, Molly Alexandra (Author) / Smith, Brian (Thesis director) / Sebren, Ann (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134984-Thumbnail Image.png
Description
The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical

The mammalian olfactory system is commonly studied by using the mouse as a model system. Odor habituation is used to investigate odor perception and learning processes. Most previous experimental preparations have been tedious, requiring a researcher to manually change odorants, record investigation time and duration at each odorant, or physical alteration on the mice to enable video tracking. These limitations were overcame by creating an odorized hole-board to allow for systematic and automatic recording of olfactory behavior in mice. A cohort of five male mice were utilized in these experiments and the responses to the odor of strawberries, a diet staple of wile mice, were examined. Experiment 1 showed that free-feeding mice exhibit a preference to locations with strawberry (over control locations), even when these locations can only be identified using olfaction. This preference habituates within a trial but not across days. Experiment 2 showed that strawberry odor without reward causes habituation or extinction to the odor both within trials and across days. From these experiments, it can be concluded that mice innately explore strawberry odor and this can be exploited to the study odor habituation using an odorized hole-board.
ContributorsMa, Jason (Author) / Smith, Brian (Thesis director) / Gerkin, Richard (Committee member) / Oddo, Salvatore (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135022-Thumbnail Image.png
Description
Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine

Animals must learn to ignore stimuli that are irrelevant to survival, a process referred to as latent inhibition. The Amtyr1 gene has been shown through quantitative trait loci mapping to be linked to strong latent inhibition in honey bees. Here we implicate this G-protein coupled receptor for the biogenic amine tyramine as an important factor underlying this form of learning in honey bees. We show that dsRNA targeted to disrupt the tyramine receptors, specifically affects latent inhibition but not excitatory associative conditioning. Our results therefore identify a distinct reinforcement pathway for latent inhibition in insects.
ContributorsPetersen, Mary Margaret (Author) / Smith, Brian (Thesis director) / Wang, Ying (Committee member) / Sinakevitch, Irina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12