Matching Items (89)
127858-Thumbnail Image.png
Description

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We obtained records of monthly mortality and of monthly mean temperatures and precipitation for Skellefteå parish, northern Sweden, for the period 1800-1950. The associations between monthly total mortality, as well as monthly mortality due to infectious and cardiovascular diseases, and monthly mean temperature and cumulative precipitation were modelled using a time series approach for three separate periods, 1800−1859, 1860-1909, and 1910-1950.

Results: We found higher temperatures and higher amounts of precipitation to be associated with lower mortality both in the medium term (same month and two-months lag) and in the long run (lag of six months up to a year). Similar patterns were found for mortality due to infectious and cardiovascular diseases. Furthermore, the effect of temperature and precipitation decreased over time.

Conclusions: Higher temperature and precipitation amounts were associated with reduced death counts with a lag of up to 12 months. The decreased effect over time may be due to improvements in nutritional status, decreased infant deaths, and other changes in society that occurred in the course of the demographic and epidemiological transition.

Contribution: The study contributes to a better understanding of the complex relationship between weather and mortality and, in particular, historical weather-related mortality.

ContributorsDaniel, Oudin Astrom (Author) / Edvinsson, Soren (Author) / Hondula, David M. (Author) / Rocklov, Joacim (Author) / Schumann, Barbara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-05
128591-Thumbnail Image.png
Description

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

ContributorsMeyer-Dombard, D'Arcy R. (Author) / Woycheese, Kristin M. (Author) / Yargicoglu, Erin N. (Author) / Cardace, Dawn (Author) / Shock, Everett (Author) / Gulecal-Pektas, Yasemin (Author) / Temel, Mustafa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-19
156998-Thumbnail Image.png
Description
Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred

Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred to as traditional ecological knowledge or TEK), which exceeds the boundaries of non-Indigenous ideas of physical characteristics of the world, tends to be more holistic, and is culturally framed. In this ethnogeological study, I have implemented several methods of participatory rapid assessment (PRA) from the discipline of field ethnography to collect culturally framed geological knowledge, as well to measure the authenticity of the knowledge collected. I constructed a cultural consensus model (CCM) about karst as a domain of knowledge. The study area is located in the karst physiographic region of the Caribbean countries of the Dominican Republic (DR) and Puerto Rico (PR). Ethnogeological data collected and analyzed using CCM satisfied the requirements of a model where I have found statistically significance among participant’s agreement and competence values. Analysis of the competence means in the population of DR and PR results in p < 0.05 validating the methods adapted for this study. I discuss the CCM for the domain of karst (in its majority) that is shared among consultants in the countries of PR and the DR that is in the form of metaphors and other forms of culturally framed descriptions. This work continuing insufficient representation of minority groups such as Indigenous people, Native Americans, Alaska Natives, and Hispanic/Latinxs in the Earth Sciences.
ContributorsGarcia, Angel Antonio (Author) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth, (Committee member) / Shock, Everett (Committee member) / Bowman, Catherine (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2018
126596-Thumbnail Image.png
Description

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people,

Society is heavily dependent on a reliable electric supply; all infrastructure systems depend on electricity to operate. When the electric system fails, the impacts can be catastrophic (food spoilage, inoperable medical devices, lack of access to water, etc.). The social impacts, defined as the direct and indirect impacts on people, of power outages must be explored as the likelihood of power outages and blackouts are increasing. However, compared to other hazards, such as heat and flooding, the knowledge base on the impacts of power outages is relatively small. The purpose of this thesis is to identify what is currently known about the social impacts of power outages, identify where gaps in the literature exist, and deploy a survey to explore power outage experiences at the household level. This thesis is comprised of two chapters, a systematic literature review on the current knowledge of the social impacts of power outages and a multi-city survey focused on power outage experiences.

The first chapter comprised of a systematic literature review using a combined search of in Scopus which returned 762 candidate articles were identified that potentially explored the social impacts of power outages. However, after multiple filtering criteria were applied, only 45 articles met all criteria. Four themes were used to classify the literature, not exclusively, including modeling, social, technical, and other. Only papers that were classified as “social” - meaning they observed how people were affected by a power outage - or in combination with other categories were used within the review.

From the literature, populations of concern were identified, including minority demographics - specifically Blacks or African Americans, children, elderly, and rural populations. The most commonly reported health concerns were from those that rely on medical devices for chronic conditions and unsafe generator practices. Criminal activity was also reported to increase during prolonged power outages and can be mitigated by consistent messaging on where to receive assistance and when power will be restored. Providing financial assistance and resources such as food and water can reduce the crime rate temporarily, but the crime rate can be expected to increase once the relief expires. Authorities should expect looting to occur, especially in poorer areas, during prolonged power outages. Gaps in the literature were identified and future directions for research were provided.

The second chapter consists of a multi-city survey that targeted three major cities across the United States (Detroit, MI; Miami, FL; and Phoenix, AZ). The survey was disseminated through Amazon’s Mechanical Turk and hosted by Qualtrics. 896 participants from the three cities qualified to complete the full version of the survey. Three criteria had to be met for participants to complete the full survey including residing in one of the three target cities, living at their primary address for a majority of the year, and indicate they had experienced a power outage within the last five years.

Participants were asked questions regarding the number of outages experienced in the last five years, the length of their most recent and longest outage experienced, if they owned a generator, how they managed their longest power outage, if participants or anyone in their household relies on a medical device, the financial burden their power outage caused, and standard demographic- and income-related questions. Race was a significant variable that influenced the outage duration length but not frequency in Phoenix and Detroit. Income was not a significant variable associated with experiencing greater economic impacts, such as having thrown food away because of an outage and not receiving help during the longest outage. Additional assessments similar to this survey are needed to better understand household power outage experiences.

Findings from this thesis demonstrate traditional metrics used in vulnerability indices were not indicative of who experienced the greatest effects of power outages. Additionally, other factors that are not included in these indices, such as owning adaptive resources including medical devices and generators in Phoenix and Detroit, are factors in reducing negative outcomes. More research is needed on this topic to indicate which populations are more likely to experience factors that can influence positive or negative outage outcomes.

ContributorsAndresen, Adam (Author) / Hondula, David M. (Contributor, Contributor) / Gall, Melanie (Contributor) / Meerow, Sara (Contributor)
Created2020-07-20
103-Thumbnail Image.png
Description

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is not based on the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges.

Using Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix) we explore the distribution of private and public cooling resources and access inequities at the household level. We do this by evaluating the presence of in-home air conditioning and developing a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant inequities in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space.

At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource which includes libraries and commercial establishments. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase the health risks associated with heat.

Created2016
128824-Thumbnail Image.png
Description

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.

ContributorsDick, Jeffrey M. (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-02
136221-Thumbnail Image.png
Description

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality Department developed a website and mobile application called "Clean Air Make More" as a means of outreach and engagement. In

Maricopa County is the home of the Phoenix metropolitan area, an expansive city with serious air quality concerns. To ameliorate air quality in the county, the Maricopa County Air Quality Department developed a website and mobile application called "Clean Air Make More" as a means of outreach and engagement. In doing this, the county has found a way to engender a bilateral relationship between individuals and their government agency. This study analyzes the effectiveness of Clean Air Make More in establishing this relationship and engaging the community in efforts to improve air quality. It concludes that the design of the application effectively meets user needs, but marketing efforts should target populations disposed to taking action regarding air quality.

ContributorsLapoint, Maggie Lane (Author) / Johnston, Erik W., 1977- (Thesis director) / Hondula, David M. (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
141423-Thumbnail Image.png
Description

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure

Background:
Environmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.

Objectives:
The first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.

Discussion:
We define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time–activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.

Conclusions:
Personal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure.

ContributorsKuras, Evan R. (Author) / Richardson, Molly B. (Author) / Calkins, Mirian M. (Author) / Ebi, Kristie L. (Author) / Gohlke, Julia M. (Author) / Hess, Jeremy J. (Author) / Hondula, David M. (Author) / Kintziger, Kristina W. (Author) / Jagger, Meredith A. (Author) / Middel, Ariane (Author) / Scott, Anna A. (Author) / Spector, June T. (Contributor) / Uejio, Christopher K. (Author) / Vanos, Jennifer K. (Author) / Zaitchik, Benjamin F. (Author)
Created2017-08
140960-Thumbnail Image.png
Description
In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease

In June 2016, the Arizona Department of Health Services (ADHS) with researchers from Arizona State University (ASU) convened a one-day workshop of public health professionals and experts from Arizona’s county and state agencies to advance statewide preparedness for extreme weather events and climate change. The United States Centers for Disease Control and Prevention (CDC) sponsors the Climate-Ready Cities and States Initiative, which aims to help communities across the country prepare for and prevent projected disease burden associated with climate change. Arizona is one of 18 public health jurisdictions funded under this initiative. ADHS is deploying the CDC’s five-step Building Resilience Against Climate Effects (BRACE) framework to assist counties and local public health partners with becoming better prepared to face challenges associated with the impacts of climate-sensitive hazards. Workshop participants engaged in facilitated exercises designed to rigorously consider social vulnerability to hazards in Arizona and to prioritize intervention activities for extreme heat, wildfire, air pollution, and flooding.

This report summarizes the proceedings of the workshop focusing primarily on two sessions: the first related to social vulnerability mapping and the second related to the identification and prioritization of interventions necessary to address the impacts of climate-sensitive hazards.
ContributorsRoach, Matthew (Author) / Hondula, David M. (Author) / Putnam, Hana (Author) / Chhetri, Nalini (Author) / Chakalian, Paul (Author) / Watkins, Lance (Author) / Dufour, Brigette (Author)
Created2016-11-28