Matching Items (75)
128000-Thumbnail Image.png
Description

The Proboscis Extension Response (PER) conditioning protocol, developed for the honey bee (Apis mellifera), provides an ecologically-relevant and easily quantifiable means for studying several different mechanisms of learning in many insect species.

ContributorsSmith, Brian (Author) / Burden, Christina (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-08
128046-Thumbnail Image.png
Description

Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled

Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models.

ContributorsSerrano, Eduardo (Author) / Nowotny, Thomas (Author) / Levi, Rafael (Author) / Smith, Brian (Author) / Huerta, Ramon (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-07-18
128639-Thumbnail Image.png
Description

Background: Centralized silos of genomic data are architecturally easier to initially design, develop and deploy than distributed models. However, as interoperability pains in EHR/EMR, HIE and other collaboration-centric life sciences domains have taught us, the core challenge of networking genomics systems is not in the construction of individual silos, but the

Background: Centralized silos of genomic data are architecturally easier to initially design, develop and deploy than distributed models. However, as interoperability pains in EHR/EMR, HIE and other collaboration-centric life sciences domains have taught us, the core challenge of networking genomics systems is not in the construction of individual silos, but the interoperability of those deployments in a manner embracing the heterogeneous needs, terms and infrastructure of collaborating parties. This article demonstrates the adaptation of BitTorrent to private collaboration networks in an authenticated, authorized and encrypted manner while retaining the same characteristics of standard BitTorrent.

Results: The BitTorious portal was sucessfully used to manage many concurrent domestic Bittorrent clients across the United States: exchanging genomics data payloads in excess of 500GiB using the uTorrent client software on Linux, OSX and Windows platforms. Individual nodes were sporadically interrupted to verify the resilience of the system to outages of a single client node as well as recovery of nodes resuming operation on intermittent Internet connections.

Conclusions: The authorization-based extension of Bittorrent and accompanying BitTorious reference tracker and user management web portal provide a free, standards-based, general purpose and extensible data distribution system for large ‘omics collaborations.

ContributorsLee, Preston (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2014-12-21
128640-Thumbnail Image.png
Description

Background: Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by

Background: Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by the general public, wherein a small portion of each user’s local disk may be used for archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built.

Results: Automated test cases for the BitTorious Volunteer extensions have been added to the portal’s v3.0.0 release, supporting validation of the “peer affinity” concept and announcement protocol introduced by this specification. Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians wishing to integrate into libtorrent-based projects.

Conclusions: The BitTorrent “affinity” extensions as provided in the BitTorious portal reference implementation allow data publishers to crowdsource the extreme storage prerequisites for research in “big data” fields. With sufficient awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.

ContributorsLee, Preston (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2015-11-04
135993-Thumbnail Image.png
Description
Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to

Mammalian olfaction relies on active sniffing, which both shapes and is shaped by olfactory stimuli. Habituation to repeated exposure of an olfactory stimuli is believed to be mediated by decreased sniffing; however, this decrease may be reserved by exposure to novel odorants. Because of this, it may be possible to use sniffing itself as a measure of novelty, and thus as a measure of odorant similarity. Thus, I investigated the use of sniffing to measure habituation, cross-habituation, and odorant similarity. During habituation experiments, increases in sniff rate seen in response to odorant presentation decreased in magnitude between the first and second presentations, suggesting of habituation. Some of this reduction in sniff rate increases was revered by the presentation of a novel odorant in cross-habituations. However the effect sizes in cross-habituation experiments were low, and the variability high, forestalling the conclusion that sniffing accurately measured cross-habituation. I discuss improvements to the experimental protocol that may allow for cross-habituation to be more accurately measured using sniffing alone in future experiments.
ContributorsVigayavel, Nirmal (Author) / Smith, Brian (Thesis director) / Sanabria, Federico (Committee member) / Gerkin, Rick (Committee member) / Barrett, The Honors College (Contributor)
Created2015-12