Matching Items (63)
154601-Thumbnail Image.png
Description
The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein,

The emergence of invasive non-Typhoidal Salmonella (iNTS) infections belonging to sequence type (ST) 313 are associated with severe bacteremia and high mortality in sub-Saharan Africa. Distinct features of ST313 strains include resistance to multiple antibiotics, extensive genomic degradation, and atypical clinical diagnosis including bloodstream infections, respiratory symptoms, and fever. Herein, I report the use of dynamic bioreactor technology to profile the impact of physiological fluid shear levels on the pathogenesis-related responses of ST313 pathovar, 5579. I show that culture of 5579 under these conditions induces profoundly different pathogenesis-related phenotypes than those normally observed when cultures are grown conventionally. Surprisingly, in response to physiological fluid shear, 5579 exhibited positive swimming motility, which was unexpected, since this strain was initially thought to be non-motile. Moreover, fluid shear altered the resistance of 5579 to acid, oxidative and bile stress, as well as its ability to colonize human colonic epithelial cells. This work leverages from and advances studies over the past 16 years in the Nickerson lab, which are at the forefront of bacterial mechanosensation and further demonstrates that bacterial pathogens are “hardwired” to respond to the force of fluid shear in ways that are not observed during conventional culture, and stresses the importance of mimicking the dynamic physical force microenvironment when studying host-pathogen interactions. The results from this study lay the foundation for future work to determine the underlying mechanisms operative in 5579 that are responsible for these phenotypic observations.
ContributorsCastro, Christian (Author) / Nickerson, Cheryl A. (Thesis advisor) / Ott, C. Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2016
152919-Thumbnail Image.png
Description
Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary

Monitoring of air pollutants is critical for many applications and studies. In

order to access air pollutants with high spatial and temporal resolutions, it is

necessary to develop an affordable, small size and weight, low power, high

sensitivity and selectivity, and wireless enable device that can provide real time

monitoring of air pollutants. Three different kind of such devices are presented, they

are targeting environmental pollutants such as volatile organic components (VOCs),

nitrogen dioxide (NO2) and ozone. These devices employ innovative detection

methods, such as quartz crystal tuning fork coated with molecularly imprinted

polymer and chemical reaction induced color change colorimetric sensing. These

portable devices are validated using the gold standards in the laboratory, and their

functionality and capability are proved during the field tests, make them great tools

for various air quality monitoring applications.
ContributorsChen, Cheng, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Kiaei, Sayfe (Committee member) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2014
152522-Thumbnail Image.png
Description
Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are

Wide spread adoption of photovoltaic technology is limited by cost. Developing photovoltaics based on low-cost materials and processing techniques is one strategy for reducing the cost of electricity generated by photovoltaics. With this in mind, novel porphyrin and porphyrin-fullerene electropolymers have been developed here at Arizona State University. Porphyrins are attractive for inclusion in the light absorbing layer of photovoltaics due to their high absorption coefficients (on the order of 105 cm-1) and porphyrin-fullerene dyads are attractive for use in photovoltaics due to their ability to produce ultrafast photoinduced charge separation (on the order of 10-15 s). The focus of this thesis is the characterization of the photovoltaic properties of these electropolymer films. Films formed on transparent conductive oxide (TCO) substrates were contacted using a mercury drop electrode in order to measure photocurrent spectra and current-voltage curves. Surface treatment of both the TCO substrate and the mercury drop is shown to have a dramatic effect on the photovoltaic performance of the electropolymer films. Treating the TCO substrates with chlorotrimethylsilane and the mercury drop with hexanethiol was found to produce an optimal tradeoff between photocurrent and photovoltage. Incident photon to current efficiency spectra of the films show that the dominant photocurrent generation mechanism in this system is located at the polymer-mercury interface. The optical field intensity at this interface approaches zero due to interference from the light reflected by the mercury surface. Reliance upon photocurrent generation at this interface limits the performance of this system and suggests that these polymers may be useful in solar cells which have structures optimized to take advantage of their internal optical field distributions.
ContributorsBridgewater, James W (Author) / Gust, Devens (Thesis advisor) / Tao, Nongjian (Thesis advisor) / Gould, Ian (Committee member) / Diaz, Rodolfo (Committee member) / Arizona State University (Publisher)
Created2014
153589-Thumbnail Image.png
Description
Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation

Invasive salmonellosis caused by Salmonella enterica serovar Typhimurium ST313 is a major health crisis in sub-Saharan Africa, with multidrug resistance and atypical clinical presentation challenging current treatment regimens and resulting in high mortality. Moreover, the increased risk of spreading ST313 pathovars worldwide is of major concern, given global public transportation networks and increased populations of immunocompromised individuals (as a result of HIV infection, drug use, cancer therapy, aging, etc). While it is unclear as to how Salmonella ST313 strains cause invasive disease in humans, it is intriguing that the genomic profile of some of these pathovars indicates key differences between classic Typhimurium (broad host range), but similarities to human-specific typhoidal Salmonella Typhi and Paratyphi. In an effort to advance fundamental understanding of the pathogenesis mechanisms of ST313 in humans, I report characterization of the molecular genetic, phenotypic and virulence profiles of D23580 (a representative ST313 strain). Preliminary studies to characterize D23580 virulence, baseline stress responses, and biochemical profiles, and in vitro infection profiles in human surrogate 3-D tissue culture models were done using conventional bacterial culture conditions; while subsequent studies integrated a range of incrementally increasing fluid shear levels relevant to those naturally encountered by D23580 in the infected host to understand the impact of biomechanical forces in altering these characteristics. In response to culture of D23580 under these conditions, distinct differences in transcriptional biosignatures, pathogenesis-related stress responses, in vitro infection profiles and in vivo virulence in mice were observed as compared to those of classic Salmonella pathovars tested.

Collectively, this work represents the first characterization of in vivo virulence and in vitro pathogenesis properties of D23580, the latter using advanced human surrogate models that mimic key aspects of the parental tissue. Results from these studies highlight the importance of studying infectious diseases using an integrated approach that combines actions of biological and physical networks that mimic the host-pathogen microenvironment and regulate pathogen responses.
ContributorsYang, Jiseon (Author) / Nickerson, Cheryl A. (Thesis advisor) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Ott, C Mark (Committee member) / Roland, Kenneth (Committee member) / Barrila, Jennifer (Committee member) / Arizona State University (Publisher)
Created2015
153071-Thumbnail Image.png
Description
Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically

Understanding the interplay between the electrical and mechanical properties of single molecules is of fundamental importance for molecular electronics. The sensitivity of charge transport to mechanical fluctuations is a key problem in developing long lasting molecular devices. Furthermore, harnessing this response to mechanical perturbation, molecular devices which can be mechanically gated can be developed. This thesis demonstrates three examples of the unique electromechanical properties of single molecules.

First, the electromechanical properties of 1,4-benzenedithiol molecular junctions are investigate. Counterintuitively, the conductance of this molecule is found to increase by more than an order of magnitude when stretched. This conductance increase is found to be reversible when the molecular junction is compressed. The current-voltage, conductance-voltage and inelastic electron tunneling spectroscopy characteristics are used to attribute the conductance increase to a strain-induced shift in the frontier molecular orbital relative to the electrode Fermi level, leading to resonant enhancement in the conductance.

Next, the effect of stretching-induced structural changes on charge transport in DNA molecules is studied. The conductance of single DNA molecules with lengths varying from 6 to 26 base pairs is measured and found to follow a hopping transport mechanism. The conductance of DNA molecules is highly sensitive to mechanical stretching, showing an abrupt decrease in conductance at surprisingly short stretching distances, with weak dependence on DNA length. This abrupt conductance decrease is attributed to force-induced breaking of hydrogen bonds in the base pairs at the end of the DNA sequence.

Finally, the effect of small mechanical modulation of the base separation on DNA conductance is investigated. The sensitivity of conductance to mechanical modulation is studied for molecules of different sequence and length. Sequences with purine-purine stacking are found to be more responsive to modulation than purine-pyrimidine sequences. This sensitivity is attributed to the perturbation of &pi-&pi stacking interactions and resulting effects on the activation energy and electronic coupling for the end base pairs.
ContributorsBruot, Christopher, 1986- (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Mujica, Vladimiro (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2014
155174-Thumbnail Image.png
Description
Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals

Monitoring vital physiological signals, such as heart rate, blood pressure and breathing pattern, are basic requirements in the diagnosis and management of various diseases. Traditionally, these signals are measured only in hospital and clinical settings. An important recent trend is the development of portable devices for tracking these physiological signals non-invasively by using optical methods. These portable devices, when combined with cell phones, tablets or other mobile devices, provide a new opportunity for everyone to monitor one’s vital signs out of clinic.

This thesis work develops camera-based systems and algorithms to monitor several physiological waveforms and parameters, without having to bring the sensors in contact with a subject. Based on skin color change, photoplethysmogram (PPG) waveform is recorded, from which heart rate and pulse transit time are obtained. Using a dual-wavelength illumination and triggered camera control system, blood oxygen saturation level is captured. By monitoring shoulder movement using differential imaging processing method, respiratory information is acquired, including breathing rate and breathing volume. Ballistocardiogram (BCG) is obtained based on facial feature detection and motion tracking. Blood pressure is further calculated from simultaneously recorded PPG and BCG, based on the time difference between these two waveforms.

The developed methods have been validated by comparisons against reference devices and through pilot studies. All of the aforementioned measurements are conducted without any physical contact between sensors and subjects. The work presented herein provides alternative solutions to track one’s health and wellness under normal living condition.
ContributorsShao, Dangdang (Author) / Tao, Nongjian (Thesis advisor) / Li, Baoxin (Committee member) / Hekler, Eric (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2016
155525-Thumbnail Image.png
Description
Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in

Studying charge transport through single molecules is of great importance for unravelling charge transport mechanisms, investigating fundamentals of chemistry, and developing functional building blocks in molecular electronics.

First, a study of the thermoelectric effect in single DNA molecules is reported. By varying the molecular length and sequence, the charge transport in DNA was tuned to either a hopping- or tunneling-dominated regimes. In the hopping regime, the thermoelectric effect is small and insensitive to the molecular length. Meanwhile, in the tunneling regime, the thermoelectric effect is large and sensitive to the length. These findings indicate that by varying its sequence and length, the thermoelectric effect in DNA can be controlled. The experimental results are then described in terms of hopping and tunneling charge transport models.

Then, I showed that the electron transfer reaction of a single ferrocene molecule can be controlled with a mechanical force. I monitor the redox state of the molecule from its characteristic conductance, detect the switching events of the molecule from reduced to oxidized states with the force, and determine a negative shift of ~34 mV in the redox potential under force. The theoretical modeling is in good agreement with the observations, and reveals the role of the coupling between the electronic states and structure of the molecule.

Finally, conclusions and perspectives were discussed to point out the implications of the above works and future studies that can be performed based on the findings.
ContributorsLi, Yueqi, Ph.D (Author) / Tao, Nongjian (Thesis advisor) / Buttry, Daniel (Committee member) / Mujica, Vladimiro (Committee member) / Arizona State University (Publisher)
Created2017
155688-Thumbnail Image.png
Description
Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high

Antibiotic resistant bacteria are a worldwide epidemic threatening human survival. Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Current ASTs are based on bacterial culturing, which take 2-14 days to complete depending on the microbial growth rate. Considering the high mortality and morbidity rates for most acute infections, such long time frames are clinically impractical and pose a huge risk to a patient's life. A faster AST will reduce morbidity and mortality rates, as well as help healthcare providers, administer narrow spectrum antibiotics at the earliest possible treatment stage.

In this dissertation, I developed a nonculture-based AST using an imaging and cell tracking technology. I track individual Escherichia coli O157:H7 (E. coli O157:H7) Uropathogenic Escherichia Coli (UPEC) cells, widely implicated in food-poisoning outbreaks and urinary tract infections respectively. Cells tethered to a surface are tracked on the nanometer scale, and phenotypic motion is correlated with bacterial metabolism. Antibiotic action significantly slows down motion of tethered bacterial cells, which is used to perform antibiotic susceptibility testing. Using this technology, the clinical minimum bactericidal concentration of an antibiotic against UPEC pathogens was calculated within 2 hours directly in urine samples as compared to 3 days using current gold standard tools.

Such technologies can make a tremendous impact to improve the efficacy and efficiency of infectious disease treatment. This has the potential to reduce the antibiotic mis-prescription steeply, which can drastically decrease the annual 2M+ hospitalizations and 23,000+ deaths caused due to antibiotic resistance bacteria along with saving billions of dollars to payers, patients, and hospitals.
ContributorsSyal, Karan (Author) / Tao, Nongjian (Thesis advisor) / Haydel, Shelley (Committee member) / Rege, Kaushal (Committee member) / Wang, Shaopeng (Committee member) / Haynes, Karmella (Committee member) / Arizona State University (Publisher)
Created2017
155489-Thumbnail Image.png
Description
In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of

In this thesis, a breadboard Integrated Microarray Printing and Detection System (IMPDS) was proposed to address key limitations of traditional microarrays. IMPDS integrated two core components of a high-resolution surface plasmon resonance imaging (SPRi) system and a piezoelectric dispensing system that can print ultra-low volume droplets. To avoid evaporation of droplets in the microarray, a 100 μm thick oil layer (dodecane) was used to cover the chip surface. The interaction between BSA (Bovine serum albumin) and Anti-BSA was used to evaluate the capability of IMPDS. The alignment variability of printing, stability of droplets array and quantification of protein-protein interactions based on nanodroplet array were evaluated through a 10 x 10 microarray on SPR sensor chip. Binding kinetic constants obtained from IMPDS are close with results from commercial SPR setup (BI-3000), which indicates that IMPDS is capable to measure kinetic constants accurately. The IMPDS setup has following advantages: 1) nanoliter scale sample consumption, 2) high-throughput detection with real-time kinetic information for biomolecular interactions, 3) real-time information during printing and spot-on-spot detection of biomolecular interactions 4) flexible selection of probes and receptors (M x N interactions). Since IMPDS studies biomolecular interactions with low cost and high flexibility in real-time manner, it has great potential in applications such as drug discovery, food safety and disease diagnostics, etc.
ContributorsXiao, Feng (Author) / Tao, Nongjian (Thesis advisor) / Borges, Chad (Committee member) / Guo, Jia (Committee member) / Arizona State University (Publisher)
Created2017
155874-Thumbnail Image.png
Description
In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found

In sub-Saharan Africa, an invasive form of nontyphoidal Salmonella (iNTS) belonging to sequence type (ST)313 has emerged as a major public health concern causing widespread bacteremia and mortality in children with malaria and adults with HIV. Clinically, ST313 pathovars are characterized by the absence of gastroenteritis, which is commonly found in “classical” nontyphoidal Salmonella (NTS), along with multidrug resistance, pseudogene formation, and chromosome degradation. There is an urgent need to understand the biological and physical factors that regulate the disease causing properties of ST313 strains. Previous studies from our lab using dynamic Rotating Wall Vessel (RWV) bioreactor technology and “classical” NTS strain χ3339 showed that physiological fluid shear regulates gene expression, stress responses and virulence in unexpected ways that are not observed using conventional shake and static flask conditions, and in a very different manner as compared to ST313 strain D23580. Leveraging from these findings, the current study was the first to report the effect of fluid shear on the pathogenesis-related stress responses of S. Typhimurium ST313 strain A130, which evolved earlier than D23580 within the ST313 clade. A130 displayed enhanced resistance to acid, oxidative and bile stresses when cultured in the high fluid shear (HFS) control condition relative to the low fluid shear (LFS) condition in stationary phase using Lennox Broth (LB) as the culture medium. The greatest magnitude of the survival benefit conferred by high fluid shear was observed in response to oxidative and acid stresses. No differences were observed for thermal and osmotic stresses. Based on previous findings from our laboratory, we also assessed how the addition of phosphate or magnesium ions to the culture medium altered the acid or oxidative stress responses of A130 grown in the RWV. Addition of either

phosphate or magnesium to the culture medium abrogated the fluid shear-related differences observed for A130 in LB medium for the acid or oxidative stress responses, respectively. Collectively, these findings indicate that like other Salmonella strains assessed thus far by our team, A130 responds to differences in physiological fluid shear, and that ion concentrations can modulate those responses.
ContributorsGutierrez-Jensen, Ami Dave (Author) / Nickerson, Cheryl A. (Thesis advisor) / Barrila, Jennifer (Thesis advisor) / Ott, C. M. (Committee member) / Roland, Kenneth (Committee member) / Arizona State University (Publisher)
Created2017