Matching Items (77)
156178-Thumbnail Image.png
Description
The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress

The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress can return to levels similar to controls when a post-stress “rest” period (i.e., undisturbed except for normal husbandry) is given prior to testing. Male rats underwent chronic restraint stress for 6hr/day/21days (STR-IMM). Some rats, underwent a post-stress rest period for 6- or 3-weeks after the end of stress (STR-R6, STR-R3). Control (CON) rats were unrestrained for the duration of the experiment. In Experiment 1, following the stress or rest manipulation, all rats were acclimated to conditioning and extinction contexts, fear conditioned with 3 tone-foot shock pairings, and then had two days of extinction training. All groups froze similarly to the tone across all training sessions. However, STR-R6/R3 froze less in the non-shock context than did STR-IMM or CON. During extinction training, STR-IMM showed high levels of freezing to the non-shock context, leading to a concern they may be generalizing across contexts. Consequently, a follow-up experiment tested for context generalization. In Experiment 2, STR-IMM rats underwent a generalization test in an environment that was either different or the same as the conditioning environment, using STR-R6 as a comparison. STR-IMM and STR-R6 showed similar relative levels of freezing to tone and context, regardless of their conditioning environment to reveal that STR-IMM did not generalize and instead, maybe expressing hypervigilance. Thus, the present study demonstrated the novel finding that a rest period from chronic stress can lead to reduced fear responsiveness in a non-shock environment.
ContributorsJudd, Jessica M (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2018
156503-Thumbnail Image.png
Description
The Internet and climate change are two forces that are poised to both cause and enable changes in how we provide our energy infrastructure. The Internet has catalyzed enormous changes across many sectors by shifting the feedback and organizational structure of systems towards more decentralized users. Today’s energy systems require

The Internet and climate change are two forces that are poised to both cause and enable changes in how we provide our energy infrastructure. The Internet has catalyzed enormous changes across many sectors by shifting the feedback and organizational structure of systems towards more decentralized users. Today’s energy systems require colossal shifts toward a more sustainable future. However, energy systems face enormous socio-technical lock-in and, thus far, have been largely unaffected by these destabilizing forces. More distributed information offers not only the ability to craft new markets, but to accelerate learning processes that respond to emerging user or prosumer centered design needs. This may include values and needs such as local reliability, transparency and accountability, integration into the built environment, and reduction of local pollution challenges.

The same institutions (rules, norms and strategies) that dominated with the hierarchical infrastructure system of the twentieth century are unlikely to be good fit if a more distributed infrastructure increases in dominance. As information is produced at more distributed points, it is more difficult to coordinate and manage as an interconnected system. This research examines several aspects of these, historically dominant, infrastructure provisioning strategies to understand the implications of managing more distributed information. The first chapter experimentally examines information search and sharing strategies under different information protection rules. The second and third chapters focus on strategies to model and compare distributed energy production effects on shared electricity grid infrastructure. Finally, the fourth chapter dives into the literature of co-production, and explores connections between concepts in co-production and modularity (an engineering approach to information encapsulation) using the distributed energy resource regulations for San Diego, CA. Each of these sections highlights different aspects of how information rules offer a design space to enable a more adaptive, innovative and sustainable energy system that can more easily react to the shocks of the twenty-first century.
ContributorsTyson, Madeline (Author) / Janssen, Marco (Thesis advisor) / Tuttle, John (Committee member) / Allenby, Braden (Committee member) / Potts, Jason (Committee member) / Arizona State University (Publisher)
Created2018
158687-Thumbnail Image.png
Description
Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little

Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations.
ContributorsMaldonado Perez, Nubia Erandi (Author) / Moore, Marianne S (Thesis advisor) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2020
158019-Thumbnail Image.png
Description
Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony.

Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony. Although mechanisms that facilitate the communication of the presence of a fertile queen to all members of the colony have been highly studied, those studies have often overlooked the added challenge faced by polydomous species, which divide their nests across as many as one hundred satellite nests resulting in workers potentially having infrequent contact with the queen. In these polydomous contexts, regulatory phenotypes must extend beyond the immediate spatial influence of the queen.

This work investigates mechanisms that can extend the spatial reach of fertility signaling and reproductive regulation in three polydomous ant species. In Novomessor cockerelli, the presence of larvae but not eggs is shown to inhibit worker reproduction. Then, in Camponotus floridanus, 3-methylheptacosane found on the queen cuticle and queen-laid eggs is verified as a releaser pheromone sufficient to disrupt normally occurring aggressive behavior toward foreign workers. Finally, the volatile and cuticular hydrocarbon pheromones present on the cuticle of Oecophylla smaragdina queens are shown to release strong attraction response by workers; when coupled with previous work, this result suggests that these chemicals may underly both the formation of a worker retinue around the queen as well as egg-located mechanisms of reproductive regulation in distant satellite nests. Whereas most previous studies have focused on the short-range role of hydrocarbons on the cuticle of the queen, these studies demonstrate that eusocial insects may employ longer range regulatory mechanisms. Both queen volatiles and distributed brood can extend the range of queen fertility signaling, and the use of larvae for fertility signaling suggest that feeding itself may be a non-chemical mechanism for reproductive regulation. Although trail laying in mass-recruiting ants is often used as an example of complex communication, reproductive regulation in ants may be a similarly complex example of insect communication, especially in the case of large, polydomous ant colonies.
ContributorsEbie, Jessica (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Thesis advisor) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
Description

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment,

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.

Created2014-07-01
129467-Thumbnail Image.png
Description

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately

Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction.

ContributorsSzyszka, Paul (Author) / Gerkin, Richard (Author) / Galizia, C. Giovanni (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-25
129493-Thumbnail Image.png
Description

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end of this century. This paper applies the social-ecological system framework and common-pool resource theory to explore the congruence between successful resolution of small-scale appropriation problems and ozone regulation, a large-scale pollution problem. The results of our analysis correspond closely to past studies of the Protocol that highlight the importance of attributes such as a limited number of major industrial producers, advances in scientific knowledge, and the availability of technological substitutes. However, in contrast to previous theoretical accounts that focus on one or a few variables, our analysis suggests that its success may have been the result of interactions between a wider range of SES attributes, many of which are associated with successful small-scale environmental governance. Although carefully noting the limitations of drawing conclusions from the analysis of a single case, our analysis reveals the potential for fruitful interplay between common-pool resource theory and large-scale pollution problems.

ContributorsEpstein, Graham (Author) / Perez Ibarra, Irene (Author) / Schoon, Michael (Author) / Meek, Chanda L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129494-Thumbnail Image.png
Description

In this paper we use a case study of the Rhine River to examine the relevance of Common Pool Resource (CPR) Theory for two conditions in which it has not been extensively tested: large scale international water management and pollution problems. For that purpose, we link variation in pollution abatement

In this paper we use a case study of the Rhine River to examine the relevance of Common Pool Resource (CPR) Theory for two conditions in which it has not been extensively tested: large scale international water management and pollution problems. For that purpose, we link variation in pollution abatement to a set of explanatory variables proposed by CPR theory. Causal inference is established through process tracing and a series of within-case comparison across actor groups (i.e. riparian nations, industry, and agriculture), resource types (i.e. point source, and non-point source pollutants), and time periods (1976–1986, when treaties provided a limited basis for collective action and pollution abatement, and 1987–2001, when the Rhine Action Plan proved more successful). According to our analysis, a number of CPR variables can help understanding cooperation for pollution abatement in the Rhine case. These include physical attributes such as clear hydrological boundaries; governance factors such as the articulation of monitoring and decision-making at different governance levels and the proportional allocation of costs and benefits of abating pollution; and actor factors like the small size, trust and homogeneity of some actor groups and leadership. Other variables proposed by CPR theory proved to be irrelevant or in need of qualification. These include the right to self-organize and to participate in decision-making, communication and resource-dependence. Finally, two variables, not emphasized by CPR theory, proved relevant: the occurrence of external disturbances and the role of interest groups. We conclude that CPR theory is valuable for explaining pollution management in large trans-boundary river basins, but requires qualification and extension.

Created2013-11-30
129358-Thumbnail Image.png
Description

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the system are analyzed: the number of settlements, the resource level, and the proportion of cooperators in the population. Our paper adds a more realistic approach to previous studies on the evolution of cooperation by considering a social-ecological system in which agents move in a landscape to harvest a renewable resource. Our results conclude that resource dynamics play an important role when studying levels of cooperation and resource use. Our simulations show that the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear and very sensible to the type of spatial distribution of the resource richness. In our simulations, better outcomes of long-term sustainability of the resource are obtained with moderate agent mobility and cooperation is enhanced in harsh environments with low resource level in which cooperative groups have natural boundaries fostered by agents’ low mobility.

ContributorsPerez, Irene (Author) / Janssen, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-24
129248-Thumbnail Image.png
Description

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior is emerging that include concepts such as trust, conditional cooperation, other-regarding preferences, social norms, and reputation. The new behavioral perspective also demonstrates that behavioral responses depend on social and biophysical context.

Created2015-02-01