Matching Items (73)
154031-Thumbnail Image.png
Description
Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child

Background: Although childhood engagement in physical activity has received growing attention, most children still do not meet the recommended daily 60 minutes of moderate to vigorous physical activity [MVPA]. Children of ethnic minorities are less likely to meet the guidelines. Interventions have been implemented in various settings to increase child physical activity levels, yet these efforts have not yielded consistent results. The purpose of this study was to assess the preliminary effects of a community-based intervention on light physical activity and MVPA among 6-11 year old children. Methods: The present study was part of a larger study called Athletes for Life [AFL], a family-based, nutrition-education and physical activity intervention. The present study focused on physical activity data from the first completed cohort of participants (n=29). This study was a randomized control trial in which participating children were randomized into a control (n=14) or intervention (n=15) group. Participants wore accelerometers at two time points. Intervention strategies were incorporated to increase child habitual physical activity. Analyses of covariance were performed to test for post 12-week differences between both groups on the average minutes of light physical activity and MVPA minutes per day.

Results: The accelerometer data demonstrated no significant difference in light physical activity or MVPA mean minutes per day between the groups. Few children reported engaging in activities sufficient for meeting the physical activity guidelines outside the AFL program. Of the 119 total distributed child physical activity tracker sheets (7 per family), 55 were returned. Of the 55 returned physical activity tracker sheets, parents reported engaging in physical activity with their children only 7 times outside of the program over seven weeks.

Conclusion: The combined intervention strategies implemented throughout the 12-week study did not appear to be effective at increasing habitual mean minutes per day spent engaging in light and MVPA among children beyond the directed program. Methodological limitations and low adherence to intervention strategies may partially explain these findings. Further research is needed to test successful strategies within community programs to increase habitual light physical activity and MVPA among 6-11 year old children.
ContributorsQuezada, Blanca (Author) / Crespo, Noe (Thesis advisor) / Huberty, Jennifer (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2015
153017-Thumbnail Image.png
Description
Cell morphology and the distribution of voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of spatiotemporal synaptic input patterns. Although many studies have provided insight into the computational properties arising from neuronal structure as well as from channel kinetics,

Cell morphology and the distribution of voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of spatiotemporal synaptic input patterns. Although many studies have provided insight into the computational properties arising from neuronal structure as well as from channel kinetics, no comprehensive theory exists which explains how the interaction of these features shapes neuronal excitability. In this study computational models based on the identified Drosophila motoneuron (MN) 5 are developed to investigate the role of voltage gated ion channels, the impact of their densities and the effects of structural features.

First, a spatially collapsed model is used to develop voltage gated ion channels to study the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from resonator to integrator properties. Second, morphologically realistic multicompartment models are studied to investigate the passive properties of MN5. The passive electrical parameters fall in a range that is commonly observed in neurons, MN5 is spatially not compact, but for the single subtrees synaptic efficacy is location independent. Further, different subtrees are electrically independent from each other. Third, a continuum approach is used to formulate a new cable theoretic model to study the output in a dendritic cable with many subtrees, both analytically and computationally. The model is validated, by comparing it to a corresponding model with discrete branches. Further, the approach is demonstrated using MN5 and used to investigate spatially distributions of voltage gated ion channels.
ContributorsBerger, Sandra (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Hamm, Thomas (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
156210-Thumbnail Image.png
Description
Pitchers are a vital part of the game of baseball and may account for up to two-thirds of the variance in win percentage. As they rise through the ranks of competition, physical skill set becomes less of a factor when compared to mentality. Pitchers are the “first line of defense”

Pitchers are a vital part of the game of baseball and may account for up to two-thirds of the variance in win percentage. As they rise through the ranks of competition, physical skill set becomes less of a factor when compared to mentality. Pitchers are the “first line of defense” for keeping opponents from having an opportunity to score, as well as for holding onto their own team’s lead. Baseball pitchers not only face pressure to perform, but also experience stress from factors such as low pay, adjusting to higher levels of competition, and internal team competition for a limited number of spots. Athletes are often resistant to seeking aid from sport psychologists and often turn to unfavorable means to cope (i.e. drugs/alcohol, excessive exercise) with stress instead. Meditation has been shown to have beneficial effects on psychological factors associated with performance including emotional regulation, anxiety, confidence, focus, and mindfulness. Mobile applications have become a popular means of delivering mindfulness. The purpose of this study was to determine the feasibility and preliminary effectiveness of delivering a mindful meditation intervention using a mobile meditation application to improve psychological factors associated with performance (i.e. emotional regulation, anxiety (somatic and cognitive), confidence, focus, mindfulness) to minor league baseball pitchers. Pitchers in instructional league (Phase one) and off season (Phase two) were asked to meditate daily for 10-minutes each day for three weeks (Phase one) and eight weeks (Phase two). Pitchers were asked to complete self-report questionnaires and satisfaction surveys at pre- and post-intervention. Pitchers in phase one reported enjoying meditation, had improvements in self-confidence and sport confidence, and reported moderate decreases in cognitive anxiety and concentration disruption. Pitchers in phase two also enjoyed meditating (94.7%) and had improvements in self-confidence and moderate decreases in somatic anxiety. Low adherence due to timing (off-season) of intervention may have been a contributing factor to fewer outcomes. Future research should explore the feasibility and effectiveness of implementing meditation during the baseball season.
ContributorsDowling, Tiffany (Author) / Huberty, Jennifer (Thesis advisor) / Ransdell, Lynda (Committee member) / Buman, Matthew (Committee member) / Michel, Jesse (Committee member) / Arizona State University (Publisher)
Created2018
155872-Thumbnail Image.png
Description
Myeloproliferative neoplasm (MPN) patients suffer from fatigue and a reduced overall quality of life, both of which are not resolved with current pharmacologic therapy. The purpose of this study was to examine the effects of a 12-week online-streamed yoga intervention on fatigue and QoL in MPN patients as compared to

Myeloproliferative neoplasm (MPN) patients suffer from fatigue and a reduced overall quality of life, both of which are not resolved with current pharmacologic therapy. The purpose of this study was to examine the effects of a 12-week online-streamed yoga intervention on fatigue and QoL in MPN patients as compared to a wait-list control group as well as to determine the feasibility of remotely collecting blood and saliva samples in a national sample. MPN patients were asked to complete 60 min/week of online yoga for 12 weeks. MPN fatigue and QoL were assessed online with single-item questions taken from the MPN SAF (fatigue and QoL) and NIH PROMIS (QoL) at baseline, week 7, and week 12. The practicality of the blood and saliva measures were defined as >70% completion rate at both baseline and week 12. Fidelity of the intervention (i.e., weekly yoga participation) was assessed via both self-report (i.e., daily log) and objective measurement (i.e., Clicky). Of the 62 MPN patients that enrolled in the study, 48 completed the intervention with 27 participating in the yoga group and 21 participating in the wait-list control group. Weekly yoga participation averaged ~41 min/week as measured objectively, whereas self-report yoga participation averaged ~56 min/week. The blood draw was determined to be practical with a 92.6% completion rate at baseline and a 70.4% completion rate at week 12. There were no significant differences from baseline to week 12 in MPN SAF fatigue (ES=0.18; p=0.724) or MPN SAF QoL (ES=-0.53; p=0.19), however, NIH PROMIS QoL was significantly improved from baseline to week 12 (ES=0.7; p=0.031) when compared to the control group. This study builds upon the findings from a prior feasibility study in demonstrating the feasibility of online yoga as well as its preliminary effects of improving total symptom burden, fatigue, pain, depression, anxiety, and sleep disturbance in MPN patients. Given the effects of yoga demonstrated both in the feasibility study and the current pilot study, a future randomized controlled trial with a larger sample size is warranted in order to further investigate the effectiveness of online yoga for MPN patient symptom burden and QoL.
ContributorsEckert, Ryan (Author) / Huberty, Jennifer (Thesis advisor) / Mesa, Ruben (Committee member) / Gowin, Krisstina (Committee member) / Dueck, Amylou (Committee member) / Kosiorek, Heidi (Committee member) / Larkey, Linda (Committee member) / Arizona State University (Publisher)
Created2017
156075-Thumbnail Image.png
Description
Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how

Food is an essential driver of animal behavior. For social organisms, the acquisition of food guides interactions with the environment and with group-mates. Studies have focused on how social individuals find and choose food sources, and share both food and information with group-mates. However, it is often not clear how experiences throughout an individual's life influence such interactions. The core question of this thesis is how individuals’ experience contributes to within-caste behavioral variation in a social group. I investigate the effects of individual history, including physical injury and food-related experience, on individuals' social food sharing behavior, responses to food-related stimuli, and the associated neural biogenic amine signaling pathways. I use the eusocial honey bee (Apis mellifera) system, one in which individuals exhibit a high degree of plasticity in responses to environmental stimuli and there is a richness of communicatory pathways for food-related information. Foraging exposes honey bees to aversive experiences such as predation, con-specific competition, and environmental toxins. I show that foraging experience changes individuals' response thresholds to sucrose, a main component of adults’ diets, depending on whether foraging conditions are benign or aversive. Bodily injury is demonstrated to reduce individuals' appetitive responses to new, potentially food-predictive odors. Aversive conditions also impact an individual's social food sharing behavior; mouth-to-mouse trophallaxis with particular groupmates is modulated by aversive foraging conditions both for foragers who directly experienced these conditions and non-foragers who were influenced via social contact with foragers. Although the mechanisms underlying these behavioral changes have yet to be resolved, my results implicate biogenic amine signaling pathways as a potential component. Serotonin and octopamine concentrations are shown to undergo long-term change due to distinct foraging experiences. My work serves to highlight the malleability of a social individual's food-related behavior, suggesting that environmental conditions shape how individuals respond to food and share information with group-mates. This thesis contributes to a deeper understanding of inter-individual variation in animal behavior.
ContributorsFinkelstein, Abigail (Author) / Amdam, Gro V (Thesis advisor) / Conrad, Cheryl (Committee member) / Smith, Brian (Committee member) / Neisewander, Janet (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2017
156178-Thumbnail Image.png
Description
The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress

The goal of the present study was to investigate whether a rest period following the end of chronic stress would impact fear extinction. Past research has indicated that chronic stress leads to impairments in the learning and recall of fear conditioning extinction. Moreover, the effects of chronic stress can return to levels similar to controls when a post-stress “rest” period (i.e., undisturbed except for normal husbandry) is given prior to testing. Male rats underwent chronic restraint stress for 6hr/day/21days (STR-IMM). Some rats, underwent a post-stress rest period for 6- or 3-weeks after the end of stress (STR-R6, STR-R3). Control (CON) rats were unrestrained for the duration of the experiment. In Experiment 1, following the stress or rest manipulation, all rats were acclimated to conditioning and extinction contexts, fear conditioned with 3 tone-foot shock pairings, and then had two days of extinction training. All groups froze similarly to the tone across all training sessions. However, STR-R6/R3 froze less in the non-shock context than did STR-IMM or CON. During extinction training, STR-IMM showed high levels of freezing to the non-shock context, leading to a concern they may be generalizing across contexts. Consequently, a follow-up experiment tested for context generalization. In Experiment 2, STR-IMM rats underwent a generalization test in an environment that was either different or the same as the conditioning environment, using STR-R6 as a comparison. STR-IMM and STR-R6 showed similar relative levels of freezing to tone and context, regardless of their conditioning environment to reveal that STR-IMM did not generalize and instead, maybe expressing hypervigilance. Thus, the present study demonstrated the novel finding that a rest period from chronic stress can lead to reduced fear responsiveness in a non-shock environment.
ContributorsJudd, Jessica M (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2018
155443-Thumbnail Image.png
Description
Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to

Physical activity, sedentary behaviors, and sleep are often associated with cardiometabolic biomarkers commonly found in metabolic syndrome. These relationships are well studied, and yet there are still questions on how each activity may affect cardiometabolic biomarkers. The objective of this study was to examine data from the BeWell24 studies to evaluate the relationship between objectively measured physical activity and sedentary behaviors and cardiometabolic biomarkers in middle age adults, while also determining if sleep quality and duration mediates this relationship. A group of inactive participants (N = 29, age = 52.1 ± 8.1 years, 38% female) with increased risk for cardiometabolic disease were recruited to participate in BeWell24, a trial testing the impact of a lifestyle-based, multicomponent smartphone application targeting sleep, sedentary, and more active behaviors. During baseline, interim (4 weeks), and posttest visits (8 weeks), biomarker measurements were collected for weight (kg), waist circumference (cm), glucose (mg/dl), insulin (uU/ml), lipids (mg/dl), diastolic and systolic blood pressures (mm Hg), and C reactive protein (mg/L). Participants wore validated wrist and thigh sensors for one week intervals at each time point to measure sedentary behavior, physical activity, and sleep outcomes. Long bouts of sitting time (>30 min) significantly affected triglycerides (beta = .15 (±.07), p<.03); however, no significant mediation effects for sleep quality or duration were present. No other direct effects were observed between physical activity measurements and cardiometabolic biomarkers. The findings of this study suggest that reductions in long bouts of sitting time may support reductions in triglycerides, yet these effects were not mediated by sleep-related improvements.
ContributorsLanich, Boyd (Author) / Buman, Matthew (Thesis advisor) / Ainsworth, Barbara (Committee member) / Huberty, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017
152819-Thumbnail Image.png
Description
Introduction: Less than half of U.S. adults meet the aerobic physical activity guidelines to exercise at least 150 minutes a week. An individual's decision to be physically active is influenced by their perceptions of physical activity. To address perceptions, interventions need to be implemented where adults spend one third of

Introduction: Less than half of U.S. adults meet the aerobic physical activity guidelines to exercise at least 150 minutes a week. An individual's decision to be physically active is influenced by their perceptions of physical activity. To address perceptions, interventions need to be implemented where adults spend one third of their day; the workplace. A number of physical activity interventions have been conducted and few have been successful at improving physical activity; therefore, there is a need to explore novel approaches to improve physical activity in the worksite. The purpose of this pilot study was to examine the impact of a seven-day gratitude intervention on perceptions of physical activity and happiness in the workplace. Methods: Full-time employees at two worksites participated in a seven-day online journaling study. Participants were randomized into the intervention (gratitude) or control group and were assessed for perceptions of physical activity and happiness at baseline, immediate post-test (day 7) and one-week follow-up (day 14). Results: Results of this study indicate that the seven-day gratitude intervention may not significantly improve perceptions of physical activity or increase happiness. Future research should consider assessing the individual's readiness for change at baseline, increasing the length of the intervention, testing participant level of gratitude at baseline and employing a larger sample size.
ContributorsRowedder, Lacey (Author) / Huberty, Jennifer (Thesis advisor) / Chisum, Jack (Committee member) / Lee, Chong (Committee member) / Arizona State University (Publisher)
Created2014
158687-Thumbnail Image.png
Description
Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little

Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations.
ContributorsMaldonado Perez, Nubia Erandi (Author) / Moore, Marianne S (Thesis advisor) / DeNardo, Dale (Committee member) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2020