Matching Items (103)
151249-Thumbnail Image.png
Description
As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an

As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.
ContributorsCavendish, Rio (Author) / Crozier, Peter (Thesis advisor) / Adams, James (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2012
148190-Thumbnail Image.png
Description

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their

When examining the medical doctrines of previous empires, they reveal the influence of religion, societal attitudes, and the historical context that influenced the scholars that penned them. The advancements during the Islamic Golden age can be seen in the field of medicine, which had the Greco-Roman medical corpus as their foundation and the source of the theory of the four humors and anatomical beliefs. This paper will analyze the effect of cultural, societal, and historical influences on the medical doctrines of Muslim medieval physicians in the Golden Age and the works of the Roman physician Galen, and demonstrate how these effects result in similarities and differences in medical practice and the understanding of disease and anatomy. Due to translation efforts that were supported by religious views on the accumulation of knowledge and the efforts of the Abbasid empire, resultant acceptance of the theory of the four humors and anatomical doctrines is observed in the treatment and perception of disease, which would consist of this paper's focus on surgery, diet therapy and associations with nature. However, with further analysis of the extent of this acceptance and the findings in the Islamic medical doctrines, the differences in experimental methods, religious interpretations, and cultural attitudes shows a deviation from the Galenic tradition, with the second set of the paper's focus being human dissection, cause of disease, and experimentation. The purpose of this research is to demonstrate the impact of religion, societal attitudes, culture and the accepted paradigm on the practice of medicine and the study of anatomy, and what would cause a challenge against the legacy of Galen.

Created2021-05
136149-Thumbnail Image.png
Description
The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface

The transition to lead-free solder in the electronics industry has benefitted the environment in many ways. However, with new materials systems comes new materials issues. During the processing of copper pads, a protective surface treatment is needed to prevent the copper from oxidizing. Characterizing the copper oxidation underneath the surface treatment is challenging but necessary for product reliability and failure analysis. Currently, FIB-SEM, which is time-consuming and expensive, is what is used to understand and analyze the surface treatment-copper oxide(s)-copper system. This project's goals were to determine a characterization methodology that cuts both characterization time and cost in half for characterizing copper oxidation beneath a surface treatment and to determine which protective surface treatment is the best as defined by multiple criterion such as cost, sustainability, and reliability. Two protective surface treatments, organic solderability preservative (OSP) and chromium zincate, were investigated, and multiple characterization techniques were researched. Six techniques were tested, and three were deemed promising. Through our studies, it was determined that the best surface treatment was organic solderability preservative (OSP) and the ideal characterization methodology would be using FIB-SEM to calibrate a QCM model, along with using SERA to confirm the QCM model results. The methodology we propose would result in a 91% reduction in characterization cost and a 92% reduction in characterization time. Future work includes further calibration of the QCM model using more FIB/SEM data points and eventually creating a model for oxide layer thickness as a function of exposure time and processing temperature using QCM as the primary data source. In doing my Capstone project for Intel, a large electronics manufacturing company, I feel it is important to remember the effects of our tools and industry on the environment and to consider the product life cycle in terms other than monetary gain and raw material recycling. To this end I will be discussing how lead is and was used in manufacturing, how it is disposed of, and how this effects the environment including plant, animal, and insect life, as well as ground water contamination. Since the ban was enacted several years ago, I will compare how lead-free alternatives currently in use compare in environmental impact and possibly raise the question of whether we have simply traded one evil for another.
ContributorsBranch Kelly, Marion Zoe (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136157-Thumbnail Image.png
Description
Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence

Honey bee (Apis mellifera) colonies have experienced substantial losses due to colony collapse disorder (CCD) since the first officially reported cases in 2006. Many factors have been implicated in CCD, including pests, pathogens, malnutrition, and pesticide use, but no correlation has been found between a single factor and the occurrence of CCD. Fungicides have received less research attention compared to insecticides, despite the fact that fungicide application coincides with bloom and the presence of bees. Pristine fungicide is widely used in agriculture and is commonly found as a residue in hives. Several studies have concluded that Pristine can be used without harming bees, but reports of brood loss following Pristine application continue to surface across the country. The primary objectives of this study were to determine whether Pristine causes an aversive gustatory response in bees and whether consumption of an acute dose affects responsiveness to sucrose. An awareness of how foragers interact with contaminated food is useful to understand the likelihood that Pristine is ingested and how that may affect bees' ability to evaluate floral resources. Our results indicated that Pristine has no significant effect on gustatory response or sucrose responsiveness. There was no significant difference between bee responses to Pristine contaminated sucrose and sucrose alone, and no significant effect of Pristine on sucrose responsiveness. These results indicate that honey bees do not have a gustatory aversion to Pristine. A lack of aversion means that honey bees will continue collecting contaminated resources and dispersing them throughout the colony where it can affect brood and clean food stores.
ContributorsMcHugh, Cora Elizabeth (Co-author) / Jernigan, Christopher (Co-author, Committee member) / Burden, Christina (Co-author) / DeGrandi-Hoffman, Gloria (Co-author) / Smith, Brian (Thesis director) / Fewell, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / School of Art (Contributor)
Created2015-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
135879-Thumbnail Image.png
Description
This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could

This study illustrates the abilities of the honeybee, Apis mellifera, to learn and differentiate between patterns solely off their spatial frequencies. Patterns were chosen based off of calculations derived from the measurements of the physical construction of the apposition compound eye, which led to predictions of what the bees could theoretically see. The hypothesis was then that bees would have a visual threshold where patterns with spatial frequencies that fall below this line should be easily distinguishable, and patterns above the threshold would have scores that mimic if the bees made choices randomly. There were 9 patterns tested, all with different spatial frequencies and in the colors of black, white, and gray. The bees were tested on their learning and pattern differentiation abilities with 10 pattern comparisons, with the lower frequency of the two being associated with an unscented sucrose solution reward. The results were surprising in that the previous studies pointing towards this visual threshold were inaccurate because of some of the patterns being learning in an intermediate ability. These intermediate scores suggest that the calculations predicting what the bees could see clearly were slightly wrong because it was more likely that the bees saw those images in more of a blur, which resulted in their intermediate score. Honeybees have served as a useful model organisms over the decades with studying learning involving visual information. This study lacked in its total numbers of trials and bees tested, which could have led to incomplete results, and this showing of an intermediate score and ability. Future studies should continue in order to advance this understanding of a perceptually and cognitively advance processing animal.
ContributorsBalsino, Brandon Bartholomew (Author) / Harrison, Jon (Thesis director) / Smith, Brian (Committee member) / Duell, Meghan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136769-Thumbnail Image.png
Description
This research examines the presentation of ASD in fictional children's literature. The goal is to use the research collected to determine what symptoms of ASD are receiving coverage versus what is not being covered but needs to be in a children's book about ASD. This was accomplished by first consulting

This research examines the presentation of ASD in fictional children's literature. The goal is to use the research collected to determine what symptoms of ASD are receiving coverage versus what is not being covered but needs to be in a children's book about ASD. This was accomplished by first consulting background literature on ASD before examining 40 children's books about characters on the spectrum. It was found that girls on the spectrum received less coverage than boys did, and that most books conformed to one of two types: looking at ASD through the eyes of a neurotypical child and looking at it through the eyes of a child who has it. This led to the proposed idea of a book about a girl on the spectrum that would alternate between her point of view and the point of view of her neurotypical friend, and the subsequent draft of said book.
ContributorsAnderson, Sarah (Contributor) / Baldini, Cajsa (Contributor) / Adams, James (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
137665-Thumbnail Image.png
Description
The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete

The semiconductor industry looks to constantly improve the efficiency of research and development in order to reduce costs and time to market. One such method was designed in order to decrease time spent inducing warpage in integrated circuits in an Intel research process. Intel's Atom product line seeks to compete with ARM architecture by entering the mobile devices CPU market. Due to the fundamental differences between the Atom's Bonnell architecture and the ARM architecture, the Intel Atom product line must utilize such improved research and development methods. Until power consumption is drastically lowered while maintaining processing speed, the Atom product line will not be able to effectively break into the mobile devices CPU market.
ContributorsLandseidel, Jack Adam (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05
137694-Thumbnail Image.png
Description
The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in

The characteristics possessed by undergraduates who have enjoyed success in an intern position are defined. Through an interview process, four traits were identified: multitasking, strong team work understanding, an inquisitive nature, and application of a cross-disciplinary mindset. An exposition of how these four traits are employed to ensure success in an internship setting is then given. Finally, a personal account of a project with Intel is expounded upon. This project addressed the unoptimized characterization test time of an Intel package quality control process. It improved throughput by developing a parallel testing method by increasing package carrier capacity and utilizing simultaneous testing. The final design led to a 4x increase of throughput rate.
ContributorsHusein, Sebastian Saint Tsei (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Jarrell, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2013-05