Matching Items (124)
128940-Thumbnail Image.png
Description

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network

International trade networks are manifestations of a complex combination of diverse underlying factors, both natural and social. Here we apply social network analytics to the international trade network of agricultural products to better understand the nature of this network and its relation to patterns of international development. Using a network tool known as triadic analysis we develop triad significance profiles for a series of agricultural commodities traded among countries. Results reveal a novel network “superfamily” combining properties of biological information processing networks and human social networks. To better understand this unique network signature, we examine in more detail the degree and triadic distributions within the trade network by country and commodity. Our results show that countries fall into two very distinct classes based on their triadic frequencies. Roughly 165 countries fall into one class while 18, all highly isolated with respect to international agricultural trade, fall into the other. Only Vietnam stands out as a unique case. Finally, we show that as a country becomes less isolated with respect to number of trading partners, the country's triadic signature follows a predictable trajectory that may correspond to a trajectory of development.

Created2012-07-02
128946-Thumbnail Image.png
Description

Whole-genome analyses of human medulloblastomas show that the dominant clone at relapse is present as a rare subclone at primary diagnosis.

Created2016-02-24
128953-Thumbnail Image.png
Description

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9

Background: On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness.

Methods: We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses.

Results: Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus.

Conclusion: Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months.

Created2013-10-02
128959-Thumbnail Image.png
Description

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.

Methods: We analyzed monthly death rates from

Background: The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden.

Methods: We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization.

Results: Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave.

Conclusions: A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918-19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality.

Created2014-07-05
129057-Thumbnail Image.png
Description

Background: We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07

Background: We have previously identified two mineral mixtures, CB07 and BY07, and their respective aqueous leachates that exhibit in vitro antibacterial activity against a broad spectrum of pathogens. The present study assesses cellular ultrastructure and membrane integrity of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli after exposure to CB07 and BY07 aqueous leachates.

Methods: We used scanning and transmission electron microscopy to evaluate E. coli and MRSA ultrastructure and morphology following exposure to antibacterial leachates. Additionally, we employed Bac light LIVE/DEAD staining and flow cytometry to investigate the cellular membrane as a possible target for antibacterial activity.

Results: Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging of E. coli and MRSA revealed intact cells following exposure to antibacterial mineral leachates. TEM images of MRSA showed disruption of the cytoplasmic contents, distorted cell shape, irregular membranes, and distorted septa of dividing cells. TEM images of E. coli exposed to leachates exhibited different patterns of cytoplasmic condensation with respect to the controls and no apparent change in cell envelope structure. Although bactericidal activity of the leachates occurs more rapidly in E. coli than in MRSA, LIVE/DEAD staining demonstrated that the membrane of E. coli remains intact, while the MRSA membrane is permeabilized following exposure to the leachates.

Conclusions: These data suggest that the leachate antibacterial mechanism of action differs for Gram-positive and Gram-negative organisms. Upon antibacterial mineral leachate exposure, structural integrity is retained, however, compromised membrane integrity accounts for bactericidal activity in Gram-positive, but not in Gram-negative cells.

Created2010-09-16
129080-Thumbnail Image.png
Description

Background: Osteosarcoma is one of the most common bone cancers in children. Most patients with metastatic osteosarcoma die of pulmonary disease and limited curative therapeutic options exist for such patients. We have previously shown that PD-1 limits the efficacy of CTL to mediate immune control of metastatic osteosarcoma in the K7M2

Background: Osteosarcoma is one of the most common bone cancers in children. Most patients with metastatic osteosarcoma die of pulmonary disease and limited curative therapeutic options exist for such patients. We have previously shown that PD-1 limits the efficacy of CTL to mediate immune control of metastatic osteosarcoma in the K7M2 mouse model of pulmonary metastatic disease and that blockade of PD-1/PD-L1 interactions can partially improve survival outcomes by enhancing the function of osteosarcoma-specific CTL. However, PD-1/PD-L1 blockade-treated mice eventually succumb to disease due to selection of PD-L1 mAb-resistant tumor cells. We investigated the mechanism of tumor cell resistance after blockade, and additional combinational therapies to combat resistance.

Methods: We used an implantable model of metastatic osteosarcoma, and evaluated survival using a Log-rank test. Cellular analysis of the tumor was done post-mortem with flow cytometry staining, and evaluated using a T-test to compare treatment groups.

Results: We show here that T cells infiltrating PD-L1 antibody-resistant tumors upregulate additional inhibitory receptors, notably CTLA-4, which impair their ability to mediate tumor rejection. Based on these results we have tested combination immunotherapy with α-CTLA-4 and α-PD-L1 antibody blockade in the K7M2 mouse model of metastatic osteosarcoma and show that this results in complete control of tumors in a majority of mice as well as immunity to further tumor inoculation.

Conclusions: Thus, combinational immunotherapy approaches to block additional inhibitory pathways in patients with metastatic osteosarcoma may provide new strategies to enhance tumor clearance and resistance to disease.

Created2015-05-19
129110-Thumbnail Image.png
Description

Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this

Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

Created2014-11-30
129120-Thumbnail Image.png
Description

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic public health preventive (non-pharmaceutical) measures. Such efforts are undermined by traditional/cultural belief systems and customs, characterized by general mistrust and skepticism against government efforts to combat the disease. This study assesses the roles of traditional customs and public healthcare systems on the disease spread.

Methods: A mathematical model is designed and used to assess population-level impact of basic non-pharmaceutical control measures on the 2014 Ebola outbreaks. The model incorporates the effects of traditional belief systems and customs, along with disease transmission within health-care settings and by Ebola-deceased individuals. A sensitivity analysis is performed to determine model parameters that most affect disease transmission. The model is parameterized using data from Guinea, one of the three Ebola-stricken countries. Numerical simulations are performed and the parameters that drive disease transmission, with or without basic public health control measures, determined. Three effectiveness levels of such basic measures are considered.

Results: The distribution of the basic reproduction number (R0) for Guinea (in the absence of basic control measures) is such that R 0 ∈ [0.77,1.35], for the case when the belief systems do not result in more unreported Ebola cases. When such systems inhibit control efforts, the distribution increases to R 0 ∈ [1.15,2.05]. The total Ebola cases are contributed by Ebola-deceased individuals (22%), symptomatic individuals in the early (33%) and latter (45%) infection stages. A significant reduction of new Ebola cases can be achieved by increasing health-care workers’ daily shifts from 8 to 24 hours, limiting hospital visitation to 1 hour and educating the populace to abandon detrimental traditional/cultural belief systems.

Conclusions: The 2014 outbreaks are controllable using a moderately-effective basic public health intervention strategy alone. A much higher (>50%) disease burden would have been recorded in the absence of such intervention.

Created2015-04-23
Description

The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or

The threat of West Nile virus (WNV) epidemics with increasingly severe neuroinvasive infections demands the development and licensing of effective vaccines. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and WNV protein subunits have been developed. Some have been approved for veterinary use or are under clinical investigation, yet no vaccine has been licensed for human use. Reaching the milestone of a commercialized human vaccine, however, may largely depend on the economics of vaccine production. Analysis suggests that currently only novel low-cost production technologies would allow vaccination to outcompete the cost of surveillance and clinical treatment. Here, we review progress using plants to address the economic challenges of WNV vaccine production. The advantages of plants as hosts for vaccine production in cost, speed and scalability, especially those of viral vector-based transient expression systems, are discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and immunogenicity in animal models. The development of vaccines based on enveloped and non-enveloped virus-like particles is also discussed. These advancements suggest that plants may provide a production platform that offers potent, safe and affordable human vaccines against WNV.

Created2015-05-01
128880-Thumbnail Image.png
Description

The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for

The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

ContributorsFisher, Michael (Author) / Allen, Rebecca (Author) / Luo, Yingqin (Author) / Curtiss, Roy (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2013-09-10