Matching Items (124)
132756-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
ContributorsDavis, Vanessa Brooke (Co-author) / Bucklin, Lindsay (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130356-Thumbnail Image.png
Description
Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and

Background
The transmission dynamics of Tuberculosis (TB) involve complex epidemiological and socio-economical interactions between individuals living in highly distinct regional conditions. The level of exogenous reinfection and first time infection rates within high-incidence settings may influence the impact of control programs on TB prevalence. The impact that effective population size and the distribution of individuals’ residence times in different patches have on TB transmission and control are studied using selected scenarios where risk is defined by the estimated or perceive first time infection and/or exogenous re-infection rates.
Methods
This study aims at enhancing the understanding of TB dynamics, within simplified, two patch, risk-defined environments, in the presence of short term mobility and variations in reinfection and infection rates via a mathematical model. The modeling framework captures the role of individuals’ ‘daily’ dynamics within and between places of residency, work or business via the average proportion of time spent in residence and as visitors to TB-risk environments (patches). As a result, the effective population size of Patch i (home of i-residents) at time t must account for visitors and residents of Patch i, at time t.
Results
The study identifies critical social behaviors mechanisms that can facilitate or eliminate TB infection in vulnerable populations. The results suggest that short-term mobility between heterogeneous patches contributes to significant overall increases in TB prevalence when risk is considered only in terms of direct new infection transmission, compared to the effect of exogenous reinfection. Although, the role of exogenous reinfection increases the risk that come from large movement of individuals, due to catastrophes or conflict, to TB-free areas.
Conclusions
The study highlights that allowing infected individuals to move from high to low TB prevalence areas (for example via the sharing of treatment and isolation facilities) may lead to a reduction in the total TB prevalence in the overall population. The higher the population size heterogeneity between distinct risk patches, the larger the benefit (low overall prevalence) under the same “traveling” patterns. Policies need to account for population specific factors (such as risks that are inherent with high levels of migration, local and regional mobility patterns, and first time infection rates) in order to be long lasting, effective and results in low number of drug resistant cases.
Created2017-01-11
133395-Thumbnail Image.png
Description
Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the

Stroke is a devastating disease that affects thousands of individuals each year. Stroke, specifically cerebral ischemia, and immune responses are important areas of study and focus. Previous studies on stroke in mouse models had shown the upregulation of a specific micro-RNA: miR-1224. We hypothesized that miR-1224 was responsible for the regulation of the ST2 receptor protein’s expression. We performed cellular transfection on murine splenocytes with four different miRNAs—miR-1224-mimic, miR-1224-inhibitor, miR-451-mimic, and a control. We predicted that transfection with 1224m would decrease ST2 expression, while transfection with 1224i would increase ST2 expression. Two complete trials were run, and analysis of the results included RT-PCR of both miRNA samples and mRNA samples to confirm transfection and controlled transcription. Reverse transcription and qPCR of miRNA was done in order to confirm that transfection was in fact successful. Reverse transcription and qPCR of the mRNA was done in order to confirm that ST2 mRNA was not altered; this allowed us to attribute any changes in ST2 protein levels to miRNA interactions, as the mRNA levels were consistent. Western blotting was done in order to assess relative protein content. We found that transfection with 1224m slightly decreased ST2 expression and transfection with 1224i slightly increased ST2 expression, however, after assessing the p-values through statistical analyses, neither difference was significant. As such, our hypothesis was rejected as it is not evident that miR-1224 plays a significant role on ST2 gene expression. Future studies are needed in order to analyze alternate protein targets to fully assess the role of miR-1224.
ContributorsReddy, Nihaal (Author) / Holechek, Susan (Thesis director) / Ahmad, Saif (Committee member) / Wood, Kristofer (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134018-Thumbnail Image.png
Description
Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru

Approximately 248 million people in the world are currently living with chronic Hepatitis B virus (HBV) infection. HBV and HCV infections are the primary cause of liver diseases such as cirrhosis and hepatocellular carcinomas in the world with an estimated 1.4 million deaths annually. HBV in the Republic of Peru was used as a case study of an emerging and rapidly spreading disease in a developing nation. Wherein, clinical diagnosis of HBV infections in at-risk communities such the Amazon Region and the Andes Mountains are challenging due to a myriad of reasons. High prices of clinical diagnosis and limited access to treatment are alone the most significant deterrent for individuals living in at-risk communities to get the much need help. Additionally, limited testing facilities, lack of adequate testing policies or national guidelines, poor laboratory capacity, resource-limited settings, geographical isolation, and public mistrust are among the chief reasons for low HBV testing. Although, preventative vaccination programs deployed by the Peruvian health officials have reduced the number of infected individuals by year and region. To significantly reduce or eradicate HBV in hyperendemic areas and countries such as Peru, preventative clinical diagnosis and vaccination programs are an absolute necessity. Consequently, the need for a portable low-priced diagnostic platform for the detection of HBV and other diseases is substantial and urgent not only in Peru but worldwide. Some of these concerns were addressed by designing a low-cost, rapid detection platform. In that, an immunosignature technology (IMST) slide used to test for reactivity against the presence of antibodies in the serum-sample was used to test for picture resolution and clarity. IMST slides were scanned using a smartphone camera placed on top of the designed device housing a circuit of 32 LED lights at 647 nm, an optical magnifier at 15X, and a linear polarizing film sheet. Tow 9V batteries powered the scanning device LED circuit ensuring enough lighting. The resulting pictures from the first prototype showed that by lighting the device at 647 nm and using a smartphone camera, the camera could capture high-resolution images. These results conclusively indicate that with any modern smartphone camera, a small box lighted to 647 nm, and optical magnifier; a powerful and expensive laboratory scanning machine can be replaced by another that is inexpensive, portable and ready to use anywhere.
ContributorsMakimaa, Heyde (Author) / Holechek, Susan (Thesis director) / Stafford, Phillip (Committee member) / Jayasuriya, Suren (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135335-Thumbnail Image.png
Description
Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an

Memory CD8+ T-cells can persist in the absence of antigen, primed for immediate activation and proliferation if later exposed to the same antigen. These cytotoxic lymphocytes provide long-term immunity following an acute infection. Studies have observed that intermediate levels of general T cell transfer prior to infection may cause an inappropriate response resulting in increased pathology rather than prevention. Therefore, our study focused on a memory CD8 T-cell therapy using lymphocytic choriomeningitis virus (LCMV) specific splenocytes, which activate and proliferate at an accelerated pace compared to that of naive T-cells. LCMV is a natural murine pathogen which also poses a zoonotic infection threat to humans, and the effect of immune cell vaccination therapies for LCMV is not fully understood. We observed the effect of multiple memory CD8 T cell dosage levels on overall disease and memory CD8 T-cell response to the virus. Infection by exposure to a carrier was shown to have a reduced impact on mice receiving higher doses of memory T cells prior to infection compared to mice receiving less or no memory cells. Higher presence of activated memory cells were shown to correlate with less disease-related weight loss and accelerated recovery times. Survival rate after exposure to carriers was not shown to be affected by dosage level, warranting further research regarding the prevalence of the immunopathology observed in other studies in natural murine transmission models.
ContributorsMiller, Charles (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Carmen, Joshua (Committee member) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135259-Thumbnail Image.png
Description
Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution

Pathogens such as lymphocytic choriomeningitis virus (LCMV) cause abnormalities in the nervous system of developing mice and humans. While humans are able to recover from infection and clear the virus, the mouse immune system tolerates the virus and lifelong infection ensues. In order to understand the factors driving LCMV evolution and evaluate its neuropathogenesis, a mouse model was needed. To establish congenital infection, newborn C57BL/6J mice were intra-cerebrally (i.c.) injected with 1 x 103 PFU LCMV Armstrong. Mice failed to thrive, resulting in a linear reduction in survival over the following two weeks and overall survival of 13%. Surviving mice did not have virus in their circulation after thirty days. As an alternative, 500 PFU of LCMV Armstrong was injected intraperitoneally (i.p.) into other litters. While this was associated with significantly reduced mortality, no mice in this group developed persistent infection either. ELISAs revealed that the mothers of injected pups developed a robust humoral response, confirming earlier reports that contact-associated acute infection occurs (Hotchin, 1971). In addition, the offspring of two litters of mice (out of six tested) also had antibodies to the virus, but at slightly lower titers. This indicates that the humoral response of the mothers may play a role in the neonatal clearance of infection. A higher titer of LCMV in i.p. injections may be necessary to overcome these barriers and establish chronic infection. In contrast, a lower dose of LCMV is recommended for i.c. injections, as the mortality seemed directly linked to the effects of the virus on offspring growth and development. Exposure to the virus in utero may also be necessary to increase survival and the likelihood of chronic infection.
ContributorsMorrow, Kristen Nicole (Author) / Blattman, Joseph (Thesis director) / Holechek, Susan (Committee member) / Franco, Lina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of

A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of this project to investigate a proposed mechanism of the disease, the contra-insulin effect, through a cell-culture experiment. To address the question of whether glycemic and hormonal conditions of cell-culture media affect Hs 795.Pl morphology, cellular growth, and glucose uptake, immunocytochemistry (ICC) and a glucose uptake assay was performed. It was hypothesized that higher the presence of hormones, specifically lactogen, in cell culture media will exacerbate the contra-insulin effect, decreasing the glucose uptake of the Hs 795.Pl cells and inducing abhorrent cell morphology. Qualitatively, estradiol and cortisol had a severe impact on cellular morphology indicative of stress and death. As for glucose uptake, it was decreased when the hormones were isolated compared to all together with estradiol thought to be majorly inhibitory to insulin’s proper functioning. It was concluded that cell morphology, growth, and glucose uptake were detrimentally impacted by the gestational hormones, especially those of cortisol and estrogen.

ContributorsPickett, Sydney (Author) / Gilchrist, Alex (Co-author) / Holechek, Susan (Thesis director) / Clarke, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of

A significant amount of prior research has been conducted to investigate type 2 diabetes, the most prevalent form afflicting over 90% of diabetic individuals [6]. Yet, gestational diabetes is an understudied form of diabetes that is thought to share various attributes with type 2 diabetes. It was the aim of this project to investigate a proposed mechanism of the disease, the contra-insulin effect, through a cell-culture experiment. To address the question of whether glycemic and hormonal conditions of cell-culture media affect Hs 795.Pl morphology, cellular growth, and glucose uptake, immunocytochemistry (ICC) and a glucose uptake assay was performed. It was hypothesized that higher the presence of hormones, specifically lactogen, in cell culture media will exacerbate the contra-insulin effect, decreasing the glucose uptake of the Hs 795.Pl cells and inducing abhorrent cell morphology. Qualitatively, estradiol and cortisol had a severe impact on cellular morphology indicative of stress and death. As for glucose uptake, it was decreased when the hormones were isolated compared to all together with estradiol thought to be majorly inhibitory to insulin’s proper functioning. It was concluded that cell morphology, growth, and glucose uptake were detrimentally impacted by the gestational hormones, especially those of cortisol and estrogen.

ContributorsGilchrist, Alex (Author) / Pickett, Sydney (Co-author) / Holechek, Susan (Thesis director) / Clarke, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-05
Description

Influenza virus A (IVA) poses a serious threat to human health, killing over 25,000 Americans in the 2022 flu season alone. In the past 10 years, vaccine efficacy has varied significantly, ranging from 20-60% each season. Because IVA is subject to high antigenic shift and strain cocirculation, more effective IVA

Influenza virus A (IVA) poses a serious threat to human health, killing over 25,000 Americans in the 2022 flu season alone. In the past 10 years, vaccine efficacy has varied significantly, ranging from 20-60% each season. Because IVA is subject to high antigenic shift and strain cocirculation, more effective IVA vaccines are needed to reduce the incidence of disease. Herein we report the production of a recombinant immune complex (RIC) vaccine “4xM2e” in Nicotiana benthamiana plants using agroinfiltration for use as a potential universal IVA vaccine candidate. RICs fuse antigen to the C-terminus of an immunoglobulin heavy chain with an epitope tag cognate to the antibody, promoting immune complex formation to increase immunogenicity. IVA matrix protein 2 ectodomain (M2e) is selected to serve as vaccine antigen for its high sequence conservation, as only a small number of minor mutations have occurred since its discovery in 1981 in the human sequence. However, there is some divergence in zoonotic IVA strains, and to account for this, we designed a combination of human consensus, swine, and avian M2e variants, 4xM2e. This was fused to the C terminus of the RIC platform to improve M2e immunogenicity and IVA strain coverage. The 4xM2e RIC was produced in N. benthamiana and verified with SDS-PAGE and Western blot assays, along with an analysis of complex formation and the potential for complement activation via complement C1q ELISA. With this work, we demonstrate the potential of RICs and plant-expression systems to generate universal IVA vaccine candidates.

ContributorsLesio, Joshua (Author) / Mason, Hugh (Thesis director) / Holechek, Susan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects 1 in 9 people aged 65 and older amounting to

The burden of dementia and its primary cause, Alzheimer’s disease, continue to devastate many with no available cure although present research has delivered methods for risk calculation and models of disease development that promote preventative strategies. Presently Alzheimer’s disease affects 1 in 9 people aged 65 and older amounting to a total annual healthcare cost in 2023 in the United States of $345 billion between Alzheimer’s disease and other dementias making dementia one of the costliest conditions to society (“2023 Alzheimer’s Disease Facts and Figures,” 2023). This substantial cost can be dramatically lowered in addition to a reduction in the overall burden of dementia through the help of risk prediction models, but there is still a need for models to deliver an individual’s predicted time of onset that supplements risk prediction in hopes of improving preventative care. The aim of this study is to develop a model used to predict the age of onset for all-cause dementias and Alzheimer’s disease using demographic, comorbidity, and genetic data from a cohort sample. This study creates multiple regression models with methods of ordinary least squares (OLS) and least absolute shrinkage and selection operator (LASSO) regression methods to understand the capacity of predictor variables that estimate age of onset for all-cause dementia and Alzheimer’s disease. This study is unique in its use of a diverse cohort containing 346 participants to create a predictive model that originates from the All of Us Research Program database and seeks to represent an accurate sampling of the United States population. The regression models generated had no predictive capacity for the age of onset but outline a simplified approach for integrating public health data into a predictive model. The results from the generated models suggest a need for continued research linking risk factors that estimate time of onset.

ContributorsGoeringer, Cayden (Author) / Holechek, Susan (Thesis director) / Sellner, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05