Matching Items (75)
147931-Thumbnail Image.png
Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

ContributorsEltze, Maren Caterina (Author) / Vernon, Brent (Thesis director) / Buneo, Christopher (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
150297-Thumbnail Image.png
Description
Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of gri

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.
ContributorsCooperhouse, Michael A (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
152024-Thumbnail Image.png
Description
Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of

Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of performing work. Maintaining these practices can be difficult, because even though obvious benefits come with achieving these goals, an individual's willpower may not always be sufficient to sustain the required effort. This dissertation advocates addressing this problem by designing novel interfaces that provide people with new practices that are fun and enjoyable, thereby reducing the need for users to draw upon willpower when pursuing these long-term goals. To draw volitional usage, these practice-oriented interfaces can integrate key characteristics of existing activities, such as music-making and other hobbies, that are already known to draw voluntary participation over long durations. This dissertation makes several key contributions to provide designers with the necessary tools to create practice-oriented interfaces. First, it consolidates and synthesizes key ideas from fields such as activity theory, self-determination theory, HCI design, and serious leisure. It also provides a new conceptual framework consisting of heuristics for designing systems that draw new users, plus heuristics for making systems that will continue drawing usage from existing users over time. These heuristics serve as a collection of useful ideas to consider when analyzing or designing systems, and this dissertation postulates that if designers build these characteristics into their products, the resulting systems will draw more volitional usage. To demonstrate the framework's usefulness as an analytical tool, it is applied as a set of analytical lenses upon three previously-existing experiential media systems. To demonstrate its usefulness as a design tool, the framework is used as a guide in the development of an experiential media system called pdMusic. This system is installed at public events for user studies, and the study results provide qualitative support for many framework heuristics. Lastly, this dissertation makes recommendations to scholars and designers on potential future ways to examine the topic of volitional usage.
ContributorsWallis, Isaac (Author) / Ingalls, Todd (Thesis advisor) / Coleman, Grisha (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152059-Thumbnail Image.png
Description
Our eyes never stop moving, even during attempted gaze fixation. Fixational eye movements, which include tremor, drift, and microsaccades, are necessary to prevent retinal image adaptation, but may also result in unstable vision. Fortunately, the nervous system can suppress the retinal displacements induced by fixational eye movements and consequently kee

Our eyes never stop moving, even during attempted gaze fixation. Fixational eye movements, which include tremor, drift, and microsaccades, are necessary to prevent retinal image adaptation, but may also result in unstable vision. Fortunately, the nervous system can suppress the retinal displacements induced by fixational eye movements and consequently keep our vision stable. The neural correlates of perceptual suppression during fixational eye movements are controversial. Also, the contribution of retinal versus extraretinal inputs to microsaccade-induced neuronal responses in the primary visual cortex (i.e. area V1) remain unclear. Here I show that V1 neuronal responses to microsaccades are different from those to stimulus motions simulating microsaccades. Responses to microsaccades consist of an initial excitatory component followed by an inhibitory component, which may be attributed to retinal and extraretinal signals, respectively. I also discuss the effects of the fixation target's size and luminance on microsaccade properties. Fixation targets are frequently used in psychophysical and electrophysiological research, and may have uncontrolled influences on experimental results. I found that microsaccade rates and magnitudes change linearly with fixation target size, but not with fixation target luminance. Finally, I present ion a novel variation of the Ouchi-Spillmann illusion, in which fixational eye movements may play a role.
ContributorsNajafian Jazi, Ali (Author) / Buneo, Christopher (Thesis advisor) / Martinez-Conde, Susana (Thesis advisor) / Macknik, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152070-Thumbnail Image.png
Description
When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are assessed prior to surgical resection to ensure the preservation of the patient's quality of life, e.g. avoid the removal of brain tissue required for speech processing. Currently considered the "gold standard" for the mapping of cortex, electrical cortical stimulation (ECS) involves the systematic activation of pairs of electrodes to localize functionally specific brain regions. This method has distinct limitations, which often includes pain experienced by the patient. Even in the best cases, the technique suffers from subjective assessments on the parts of both patients and physicians, and high inter- and intra-observer variability. Recent advances have been made as researchers have reported the localization of language areas through several signal processing methodologies, all necessitating patient participation in a controlled experiment. The development of a quantification tool to localize speech areas in which a patient is engaged in an unconstrained interpersonal conversation would eliminate the dependence of biased patient and reviewer input, as well as unnecessary discomfort to the patient. Post-hoc ECoG data were gathered from five patients with intractable epilepsy while each was engaged in a conversation with family members or clinicians. After the data were separated into different speech conditions, the power of each was compared to baseline to determine statistically significant activated electrodes. The results of several analytical methods are presented here. The algorithms did not yield language-specific areas exclusively, as broad activation of statistically significant electrodes was apparent across cortical areas. For one patient, 15 adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal lobe were determined language-significant through a controlled experiment. The task involved a patient lying in bed listening to repeated words, and yielded statistically significant activations that aligned with those of clinical evaluation. The results of this study do not support the hypothesis that unconstrained conversation may be used to localize areas required for receptive and productive speech, yet suggests a simple listening task may be an adequate alternative to direct cortical stimulation.
ContributorsLingo VanGilder, Jennapher (Author) / Helms Tillery, Stephen I (Thesis advisor) / Wahnoun, Remy (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2013
Description
Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth.
ContributorsOverstreet, Cynthia K (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica (Committee member) / Buneo, Christopher (Committee member) / Otto, Kevin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
152400-Thumbnail Image.png
Description
Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.
ContributorsAnand, Sindhu (Author) / Muthuswamy, Jitendran (Thesis advisor) / Tillery, Stephen H (Committee member) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
150692-Thumbnail Image.png
Description
This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information.

This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information. A new algorithm is proposed in this dissertation to this very issue. Optimization and parameter tuning of a robust camera motion estimation as well as implementation details are discussed for a real-time application using an ordinary general-purpose computer. Performance evaluations on real-world unmanned air vehicle (UAV) videos demonstrate the robustness of the proposed algorithms. The second half of the dissertation addresses neural signal analysis and modeling. Neural waveforms were recorded from rats' motor cortical areas while rats performed a learning control task. Prior to analyzing and modeling based on the recorded neural signal, neural action potentials are processed to detect neural action potentials which are considered the basic computation unit in the brain. Most algorithms rely on simple thresholding, which can be subjective. This dissertation proposes a new detection algorithm, which is an automatic procedure based on signal-to-noise ratio (SNR) from the neural waveforms. For spike sorting, this dissertation proposes a classification algorithm based on spike features in the frequency domain and adaptive clustering method such as the self-organizing map (SOM). Another major contribution of the dissertation is the study of functional interconnectivity of neurons in an ensemble. These functional correlations among neurons reveal spatial and temporal statistical dependencies, which consequently contributes to the understanding of a neuronal substrate of meaningful behaviors. This dissertation proposes a new generalized yet simple method to study adaptation of neural ensemble activities of a rat's motor cortical areas during its cognitive learning process. Results reveal interesting temporal firing patterns underlying the behavioral learning process.
ContributorsYang, Chenhui (Author) / Si, Jennie (Thesis advisor) / Jassemidis, Leonidas (Committee member) / Buneo, Christopher (Committee member) / Abousleman, Glen (Committee member) / Arizona State University (Publisher)
Created2012