Matching Items (61)
149883-Thumbnail Image.png
Description
The challenging search for clean, reliable and environmentally friendly energy sources has fueled increased research in thermoelectric materials, which are capable of recovering waste heat. Among the state-of-the-art thermoelectric materials β-Zn4Sb3 is outstanding because of its ultra-low glass-like thermal conductivity. Attempts to explore ternary phases in the Zn-Sb-In system resulted

The challenging search for clean, reliable and environmentally friendly energy sources has fueled increased research in thermoelectric materials, which are capable of recovering waste heat. Among the state-of-the-art thermoelectric materials β-Zn4Sb3 is outstanding because of its ultra-low glass-like thermal conductivity. Attempts to explore ternary phases in the Zn-Sb-In system resulted in the discovery of the new intermetallic compounds, stable Zn5Sb4In2-δ (δ=0.15) and metastable Zn9Sb6In2. Millimeter-sized crystals were grown from molten metal fluxes, where indium metal was employed as a reactive flux medium.Zn5Sb4In2-δ and Zn9Sb6In2 crystallize in new structure types featuring complex framework and the presence of structural disorder (defects and split atomic positions). The structure and phase relations between ternary Zn5Sb4In2-δ, Zn9Sb6In2 and binary Zn4Sb3 are discussed. To establish and understand structure-property relationships, thermoelectric properties measurements were carried out. The measurements suggested that Zn5Sb4In2-δ and Zn9Sb6In2 are narrow band gap semiconductors, similar to β-Zn4Sb3. Also, the peculiar low thermal conductivity of Zn4Sb3 (1 W/mK) is preserved. In the investigated temperature range 10 to 350 K Zn5Sb4In2-δ displays higher thermoelectric figure of merits than Zn4Sb3, indicating a potential significance in thermoelectric applications. Finally, the glass-like thermal conductivities of binary and ternary antimonides with complex structures are compared and the mechanism behind their low thermal conductivities is briefly discussed.
ContributorsWu, Yang (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Committee member) / Petuskey, William T (Committee member) / Newman, Nathan (Committee member) / Arizona State University (Publisher)
Created2011
152021-Thumbnail Image.png
Description
Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature

Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3NH3) as an internal hydrogen source were employed in the search for new hydrogen-dominant materials. Ammonia borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62- entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.
ContributorsPuhakainen, Kati (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Kouvetakis, John (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
151208-Thumbnail Image.png
Description
Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne)

Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne) and hence are also called acetylides or ethynides. Inspired by the fact that molecular acetylene undergoes pressure induced polymerization to polyacetylene above 3.5 GPa, it is of particular interest to study the effect of pressure on the crystal structures of acetylides as well. In this work, pressure induced polymerization was attempted with two simple metal acetylides, Li2C2 and CaC2. Li2C2 and CaC2 have been synthesized by a direct reaction of the elements at 800ºC and 1200ºC, respectively. Initial high pressure investigations were performed inside Diamond anvil cell (DAC) at room temperature and in situ Raman spectroscopic measurement were carried out up to 30 GPa. Near 15 GPa, Li2C2 undergoes a transition into a high pressure acetylide phase and around 25 GPa this phase turns amorphous. CaC2 is polymorphic at ambient pressure. Monoclinic CaC2-II does not show stability at pressures above 1 GPa. Tetragonal CaC2-I is stable up to at least 12 GPa above which possibly a pressure-induced distortion occurs. At around 18 GPa, CaC2 turns amorphous. In a subsequent series of experiments both Li2C2 and CaC2 were compressed to 10 GPa in a multi anvil (MA) device and heated to temperatures between 300 and 1100oC for Li2C2, and 300°C to 900°C for CaC2. The recovered products were analyzed by PXRD and Raman spectroscopy. It has been observed that reactions at temperature higher than 900°C were very difficult to control and hitherto only short reaction times could be applied. For Li2C2, a new phase, free of starting material was found at 1100°C. Both the PXRD patterns and Raman spectra of products at 1100oC could not be matched to known forms of carbon or carbides. For CaC2 new reflections in PXRD were visible at 900ºC with the starting material phase.
ContributorsKonar, Sumit (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Steimle, Timothy (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2012
131478-Thumbnail Image.png
Description
The process of cooking a turkey is a yearly task that families undertake in order to deliver a delicious centerpiece to a Thanksgiving meal. While other dishes accompany and comprise the traditional Thanksgiving supper, focusing on creating a turkey that satisfies the tastes of all guests is difficult, as preferences

The process of cooking a turkey is a yearly task that families undertake in order to deliver a delicious centerpiece to a Thanksgiving meal. While other dishes accompany and comprise the traditional Thanksgiving supper, focusing on creating a turkey that satisfies the tastes of all guests is difficult, as preferences vary. Over the years, many cooking methods and preparation variations have come to light. This thesis studies these cooking methods and preparation variations, as well as the effects on the crispiness of the skin, the juiciness of the meat, the tenderness of the meat, and the overall taste, to simplify the choices that home cooks have to prepare a turkey that best fits their tastes. Testing and evaluation reveal that among deep-frying, grilling, and oven roasting turkey, a number of preparation variations show statistically significant changes relative to a lack of these preparation variations. For crispiness, fried turkeys are statistically superior, scoring about 1.5 points higher than other cooking methods on a 5 point scale. For juiciness, the best preparation variation was using an oven bag, with the oven roasted turkey scoring about 4.5 points on a 5 point scale. For tenderness, multiple methods are excellent, with the best three preparation variations in order being spatchcocking, brining, and using an oven bag, each of these preparation variations are just under a 4 out of 5. Finally, testing reaffirms that judges tend to have different subjective tastes, with some having different perceptions and opinions on some criteria, while statistically agreeing on others: there was 67% agreement among judges on crispiness and tenderness, while there was only 17% agreement on juiciness. Evaluation of these cooking methods, as well as their respective preparation variations, addresses the question of which methods are worthwhile endeavors for cooks.
ContributorsVance, Jarod (Co-author) / Lacsa, Jeremy (Co-author) / Green, Matthew (Thesis director) / Taylor, David (Committee member) / Chemical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132278-Thumbnail Image.png
Description
Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a

Hydrocephalus is a chronic neurological condition affecting an estimated 1 in every 500 infants born. The most common treatment method involves surgical implantation of a shunt system; however these systems have a high failure rate resulting in repeat invasive surgeries. A promising approach being researched to treat hydrocephalus is a miniaturized valve composed of silicon and a hydrogel material. The current chemical cross-linker used in the hydrogel, EGDMA, however is susceptible to hydrolytic cleavage due to the ester groups.

This thesis proposed a novel hydrogel composed of a HEMA backbone and methacrylated Jeffamines as the chemical cross-linker as a possible replacement for the HEMA and EGDMA hydrogel used currently in the hydrocephalus valve. Jeffamine EDR-148 was methacrylated through reaction with methacryloyl chloride and characterized using 1H NMR spectroscopy. Subsequently, hydrogels were synthesized, using both EGDMA and EDR-MA, and the properties were compared through swelling and rotational rheology. Finally, degradation tests were performed to compare the hydrolytic stability of the two cross-linkers.

Results of this work demonstrated that Jeffamine EDR-148 was able to be successfully methacrylated and used to synthesize a hydrogel. The new hydrogel was shown to have comparable mechanical behavior and robustness to the EGDMA hydrogel, with slightly increased swelling capabilities. Degradation tests did not confirm the theory that the EDR-MA gels would exhibit greater hydrolytic stability however. Future work includes perfecting the purification of the EDR-MA, conducting a longer-term degradation study at physiologically relevant conditions, and demonstrating the tunability of the Jeffamine hydrogels.
ContributorsTrimble, Kari Leigh (Author) / Green, Matthew (Thesis director) / Chae, Junseok (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133064-Thumbnail Image.png
Description
Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the

Obtaining access to clean water is a global problem that is becoming more important with increasing population and advancing technology. Desalination through reverse osmosis (RO) is a promising technology takes advantage of the global supply of saline water to augment its limited freshwater reservoirs. To increase RO membrane performance, the feedwater is pretreated to take any excess pollutants out before the desalination. These pretreatment membranes are susceptible to fouling, which reduces efficiency and drives up costs of the overall process. Increasing the hydrophilicity of these membranes would reduce fouling, and electrospinning is a production method of pretreatment membranes with the capability to control hydrophilicity. This work explores how the composition of electrospun fibrous membranes containing blends of hydrophilic and hydrophobic polymers affects membrane characteristics such as wettability as well as filtration performance. Nonwoven, nanoscale membranes were prepared using electrospinning with a targeted application of pretreatment in water filtration. Using a rotating collector, electrospun mats of hydrophobic poly(vinyl chloride) (PVC) and hydrophilic poly(vinyl alcohol) (PVA) were simultaneously deposited from separate polymer solutions, and their polymer compositions were then characterized using Fourier Transform Infrared (FTIR) spectra. The data did not reveal a reliable correlation established between experimental control variables like flow rate and membrane composition. However, when the membranes' hydrophilicity was analyzed using static water contact angle measurements, a trend between PVA content and hydrophilicity was seen. This shows that the hypothesis of increasing PVA content to increase hydrophilicity is reliable, but with the current experimental design the PVA content is not controllable. Therefore, the primary future work is making a new experimental setup that will be able to better control membrane composition. Filtration studies to test for fouling and size exclusion will be performed once this control is obtained.
ContributorsTronstad, Zachary (Author) / Green, Matthew (Thesis director) / Holloway, Julianne (Committee member) / Epps, Thomas (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133821-Thumbnail Image.png
Description
Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural

Membrane proteins (MPs) are an important aspect of cell survival that ensure structural integrity, signaling, and transportation of molecules. Since 2015, over 450 MPs have been studied to find their functionalities and structure. Sufficient amounts of correctly folded MPs are needed to accurately study them through crystallography and other structural study methods. Use of recombinant technology is needed to overexpress MPs as natural abundance of MP is often too slow to provide the necessary amounts. However, an increase in toxicity and decrease in generation time deter the overexpression of MPs. The following report discusses two methods of enhancing overexpression in Escherchia coli, the use of T7 RNA polymerase (T7RNAP) and the reprogramming of chaperon pathways, that combats toxicity and promotes cell growth. Overall, both methods are proven to work effectively to overexpress MPs by regulating transcription rate of mRNA (T7RNAP) or folding and transporting of polypeptides to inner membrane (chaperon pathway). To further study the effectiveness of the two methods, they will need to be compared at the same conditions. In addition, a combination of two methods should also be studied to find out if the combination would have a great impact on the overexpression of the MPs.
ContributorsHan, Sue Jisue (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133303-Thumbnail Image.png
Description
Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the

Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the interfacial regions. These junctions are imperative for transferring mechanical loadings between dissimilar tissues. Engineering a proper scaffold that mimics the native architecture of these tissues to prompt proper repair after an interfacial injury has been difficult to fabricate within tissue engineering. Electrospinning is a common technique for fabricating nanofibrous scaffolds that can mimic the structure of the native extracellular matrix (ECM). However, current electrospinning techniques do not easily allow for the replication of the chemical and physical gradients present in musculoskeletal interfacial tissues. In this work, a novel magnetic electrospinning technique was developed to fabricate polycaprolactone (PCL) nanofibrous scaffolds that recapitulate the gradient alignment structure of the tendon-bone junction. When exposed to the natural magnetic field from a permanent magnet, PCL fibers innately aligned near the magnet with unalignment at distances further away from the magnetic field.
ContributorsGualtieri, Alessandra Villa (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support

Heterogeneous musculoskeletal tissues, such as the tendon-bone junction, is crucial for transferring mechanical loading during human physical activity. This region, also known as the enthesis, is composed of a complex extracellular matrix with gradient fiber orientations and chemistries. These different physical and chemical properties are crucial in providing the support that these junctions need in handling mechanical loading of everyday activities. Currently, surgical restorative procedures for a torn enthesis entail a very invasive technique of suturing the torn tendon onto the bone. This results in improper reinjury. To circumvent this issue, one common strategy within tissue engineering is to introduce a biomaterial scaffold which acts as a template for the local damaged tissue. Electrospinning can be utilized to fabricate a fibrous material to recapitulate the structure of the extracellular matrix. Currently electrospinning techniques only allow the creation of scaffold that consists of only one orientation and material. In this work, we investigated a multicomponent, magnetically assisted, electrospinning technique to fabricate a fiber alignment and chemical gradient scaffold for tendon-bone repair
ContributorsLe, Minh (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05