Matching Items (57)
Description

Visual presentation of information is one method of learning that has the ability to enhance STEM learning compared to learning solely through text. Educational psychology research is ongoing in the STEM field for how students can learn better through visual representations in their course material. The goal of this study

Visual presentation of information is one method of learning that has the ability to enhance STEM learning compared to learning solely through text. Educational psychology research is ongoing in the STEM field for how students can learn better through visual representations in their course material. The goal of this study was to assess student responses to visual mini-lessons related to course content in the cardiovascular unit in Animal Physiology (BIO360) at Arizona State University. Study participants completed a series of eight mini-lessons and a survey on their experience with the visual lessons. The results of the survey identify increased desire for visual learning materials in STEM courses. The study participants reported that they felt more visual aids in their STEM courses would increase their understanding of course content and that their classroom performance would improve.

ContributorsRauch, Grace (Author) / Hartwell, Leland (Thesis director) / Harrison, Jon (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor)
Created2022-12
Description

Foraging honey bees are challenged to balance the energetic costs of thermoregulating and load-carriage at the same time when flying in hot environments. Honey bees can reduce metabolic rate and wingbeat frequency in response to heat, but the kinematic strategies they use while carrying loads are unknown. I observed honey

Foraging honey bees are challenged to balance the energetic costs of thermoregulating and load-carriage at the same time when flying in hot environments. Honey bees can reduce metabolic rate and wingbeat frequency in response to heat, but the kinematic strategies they use while carrying loads are unknown. I observed honey bees (Apis mellifera) carrying a range of nectar loads (0 to 80% of their own body weight in nectar) when flying at 25 and 40°C air temperatures, and found that hotter honey bees decreased their wingbeat frequency (from 230 to 195 Hz) and increased their stroke amplitude (from 90 to 98°) to generate increasing aerodynamic power as they carry heavier nectar loads. The bees flying at 40°C air temperature carrying heavier loads did increase their wingbeat frequency compared to the unloaded individuals. Despite the kinematic changes, both the hot and cold honey bees were able to generate sufficient power to carry loads of roughly equal mass. Bees flying at 40°C air temperature produced more power than their cooler counterparts, suggesting a more efficient mechanism of load carriage.

ContributorsWeisman, Ethan (Author) / Harrison, Jon (Thesis director) / Glass, Jordan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2023-05
Description

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops

In the face of widespread pollinator decline, research has increasingly focused on ways that pesticides could be harming bees. Fungicides are pesticides that are used in greater volumes than insecticides, yet significantly fewer studies have investigated the effects of these agrochemicals. The fungicide Pristine® is commonly used on bee-pollinated crops and has been shown to be detrimental to physiological processes that are key to honey bee foraging, such as digestion and learning. This study seeks to investigate how Pristine® exposure affects the amount of water, nectar, and pollen that honey bees collect. Colonies were fed either plain pollen patties or pollen patties containing 23 ppm Pristine®. Exposure to fungicide had no significant effect on corbicular pollen mass, the crop volumes of nectar or water foragers, or the proportions of foragers collecting different substances. There was a significantly higher sugar concentration in the crop of Pristine®-exposed nectar foragers (43.6%, 95% CI [38.8, 48.4]) compared to control nectar foragers (36.3%, 95% CI [31.9, 40.6]). The higher sugar concentration in the nectar of Pristine®-treated bees could indicate that the agrochemical decreases sucrose responsiveness or nutritional status in bees. Alternatively, fungicide exposure may increase the amount of sugar that bees need to make it back to the hive. Based on these results, it would appear that fungicides like Pristine® do not strongly affect the amounts of substances that honey bees collect, but it is still highly plausible that treated bees forage more slowly or with lower return rates.

ContributorsChester, Elise (Author) / Harrison, Jon (Thesis director) / DesJardins, Nicole (Committee member) / Smith, Brian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Honey Bee (Apis mellifera) populations are being threatened by several environmental stressors. Climate change induced temperature extremes pose a high risk to agriculture and terrestrial ecosystems. Specific threats of climate change affect honey bee brood rearing because honey bee brood need narrow ranges in temperature otherwise there can be negative

Honey Bee (Apis mellifera) populations are being threatened by several environmental stressors. Climate change induced temperature extremes pose a high risk to agriculture and terrestrial ecosystems. Specific threats of climate change affect honey bee brood rearing because honey bee brood need narrow ranges in temperature otherwise there can be negative effects posed on development. Throughout this experiment we tested whether colony size affects thermoregulation. We hypothesized that smaller colonies would struggle to regulate in-hive temperatures in comparison to larger colonies. To test this, temperature loggers were placed in each hive at the brood center, brood edge, and periphery to log temperatures in the summer months of May to September in Arizona. Day and night temperatures were separated for each logger and the average, median, max, and min temperatures were taken for every two-week period wherein the colony population was assessed. For this experiment, we subtracted the min temperature from the max temperature of the final two-week period to assess differences in colony thermoregulatory capability. Overall, smaller colonies struggled to maintain in-hive temperatures in all three areas measured.

ContributorsChahal, Keerut (Author) / Harrison, Jon (Thesis director) / Fisher, Adrian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
187605-Thumbnail Image.png
Description
The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and

The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and ecology, and interactions between nutritional physiology and biopesticide resistance have very little research. This dissertation presents a multifaceted approach through three research-driven chapters that examine the nutritional physiology of M. sanguinipes and how it interacts with an entomopathogenic fungus for grasshopper management, as well as the challenges of using biopesticides for grasshopper management. Using the Geometric Framework for Nutrition (GFN), I established baseline macronutrient intake for M. sanguinipes, both in laboratory and field populations. Through this work, I found that field and lab populations can exhibit different protein (p) to carbohydrate (c) ratios, or Intake Targets (ITs), but that the field populations had ITs that matched the nutrients available in their environment. I also used the GFN to show that infections with the fungal entomopathogen Metarhizium robertsii DWR2009 did not alter ITs in M. sanguinipes. Although, when confined to carbohydrate- or protein-biased diets, infected grasshoppers had a slightly extended lifespan relative to grasshoppers fed balanced protein:carbohydrate diets. Interestingly, in a postmortem for the grasshopper, the fungus was only able to effectively sporulate on grasshoppers fed the 1p:1c diets, suggesting that grasshopper diet can have substantial impacts on the spread of fungal biopesticides throughout a population, in the absence of any inhibitory abiotic factors. Lastly, I examined the major barriers to fungal and microsporidian biopesticide usage in the United States, including low efficacy, thermal and environmental sensitivity, non-target effects, unregistered or restricted use, and economic or accessibility barriers. I also explored potential solutions to these challenges. This dissertation's focus on Melanoplus sanguinipes and Metarhizium roberstii Strain DWR2009, generates new information about how nutritional physiology and immunology intersect to impact M. sanguinipes performance. The methodology in each of the experimental chapters provides a framework for examining other problematic grasshopper species, by determining baseline nutritional physiology, and coupling nutrition with immunology to maximize the effectiveness of biological pesticides.
ContributorsZembrzuski, Deanna (Author) / Cease, Arianne (Thesis advisor) / Harrison, Jon (Committee member) / Angilletta, Michael (Committee member) / Jaronski, Stefan (Committee member) / Arizona State University (Publisher)
Created2023
157410-Thumbnail Image.png
Description
Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts,

Weevils are among the most diverse and evolutionarily successful animal lineages on Earth. Their success is driven in part by a structure called the rostrum, which gives weevil heads a characteristic "snout-like" appearance. Nut weevils in the genus Curculio use the rostrum to drill holes into developing fruits and nuts, wherein they deposit their eggs. During oviposition this exceedingly slender structure is bent into a straightened configuration - in some species up to 90° - but does not suffer any damage during this process. The performance of the snout is explained in terms of cuticle biomechanics and rostral curvature, as presented in a series of four interconnected studies. First, a micromechanical constitutive model of the cuticle is defined to predict and reconstruct the mechanical behavior of each region in the exoskeleton. Second, the effect of increased endocuticle thickness on the stiffness and fracture strength of the rostrum is assessed using force-controlled tensile testing. In the third chapter, these studies are integrated into finite element models of the snout, demonstrating that the Curculio rostrum is only able to withstand repeated, extreme bending because of

modifications to the composite structure of the cuticle in the rostral apex. Finally, interspecific differences in the differential geometry of the snout are characterized to elucidate the role of biomechanical constraint in the evolution of rostral morphology for both males and females. Together these studies highlight the significance of cuticle biomechanics - heretofore unconsidered by others - as a source of constraint on the evolution of the rostrum and the mechanobiology of the genus Curculio.
ContributorsJansen, Michael Andrew (Author) / Franz, Nico M (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Harrison, Jon (Committee member) / Martins, Emilia (Committee member) / Arizona State University (Publisher)
Created2009
156830-Thumbnail Image.png
Description
I examined how competition affects the way animals use thermal resources to control their body temperature. Currently, biologists use a cost benefit analysis to predict how animals should regulate their body temperature. This current theory of thermoregulation does not adequately predict how animals thermoregulate in the wild. While the model

I examined how competition affects the way animals use thermal resources to control their body temperature. Currently, biologists use a cost benefit analysis to predict how animals should regulate their body temperature. This current theory of thermoregulation does not adequately predict how animals thermoregulate in the wild. While the model works well for animals in low cost habitats, it does not work as well for animals in high cost habitats. For example, animals that are in habitats of low thermal quality thermoregulate more precisely than predicted by the current model. One reason these predictions may be wrong is that they do not account for interactions between animals. By including these interactions in future predictions, a more accurate model of thermoregulatory behavior can be created.

Before developing a theory for all animals, a model needs to be developed for a single model animal, such as fruit flies, that can be used to empirically examine how organisms thermoregulate under competition. My work examines how flies behave around other flies and develops a game theory model predicting how they should optimally behave. More specifically, my research accounts for competition among larvae by using game theory to predict how mothers should select sites when laying eggs. Although flies prefer to lay their eggs in places that will offer suitable temperatures for the development of their larvae, these sites become less suitable when crowded. Therefore, at some density of eggs, cooler sites should become equally beneficial to larvae when considering both temperature and competition. Given this tradeoff, an evolutionarily stable strategy (ESS) emerges where some flies should lay eggs in cooler sites while other flies should lay eggs at the warmer temperature. By looking at the fitness of genotypes in habitats of differing quality (competition, temperature, food quality, space), I modeled the ESS for flies laying eggs in a heterogeneous environment. I then tested these predictions by observing how flies compete for patches with different temperatures.
ContributorsBorchert, Jason (Author) / Angilletta Jr., Michael (Thesis advisor) / Pratt, Stephen (Committee member) / Harrison, Jon (Committee member) / DeNardo, Dale (Committee member) / Mitchell, William (Committee member) / Arizona State University (Publisher)
Created2018
Description
The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are

The ability to tolerate bouts of oxygen deprivation varies tremendously across the animal kingdom. Adult humans from different regions show large variation in tolerance to hypoxia; additionally, it is widely known that neonatal mammals are much more tolerant to anoxia than their adult counterparts, including in humans. Drosophila melanogaster are very anoxia-tolerant relative to mammals, with adults able to survive 12 h of anoxia, and represent a well-suited model for studying anoxia tolerance. Drosophila live in rotting, fermenting media and a result are more likely to experience environmental hypoxia; therefore, they could be expected to be more tolerant of anoxia than adults. However, adults have the capacity to survive anoxic exposure times ~8 times longer than larvae. This dissertation focuses on understanding the mechanisms responsible for variation in survival from anoxic exposure in the genetic model organism, Drosophila melanogaster, focused in particular on effects of developmental stage (larval vs. adults) and within-population variation among individuals.

Vertebrate studies suggest that surviving anoxia requires the maintenance of ATP despite the loss of aerobic metabolism in a manner that prevents a disruption of ionic homeostasis. Instead, the abilities to maintain a hypometabolic state with low ATP and tolerate large disturbances in ionic status appear to contribute to the higher anoxia tolerance of adults. Furthermore, metabolomics experiments support this notion by showing that larvae had higher metabolic rates during the initial 30 min of anoxia and that protective metabolites were upregulated in adults but not larvae. Lastly, I investigated the genetic variation in anoxia tolerance using a genome wide association study (GWAS) to identify target genes associated with anoxia tolerance. Results from the GWAS also suggest mechanisms related to protection from ionic and oxidative stress, in addition to a protective role for immune function.
ContributorsCampbell, Jacob B (Author) / Harrison, Jon F. (Thesis advisor) / Gadau, Juergen (Committee member) / Call, Gerald B (Committee member) / Sweazea, Karen L (Committee member) / Rosenberg, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
156764-Thumbnail Image.png
Description
Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine

Amongst the most studied of the social insects, the honey bee has a prominent place due to its economic importance and influence on human societies. Honey bee colonies can have over 50,000 individuals, whose activities are coordinated by chemical signals called pheromones. Because these pheromones are secreted from various exocrine glands, the proper development and function of these glands are vital to colony dynamics. In this thesis, I present a study of the developmental ontogeny of the exocrine glands found in the head of the honey bee. In Chapter 2, I elucidate how the larval salivary gland transitions to an adult salivary gland through apoptosis and cell growth, differentiation and migration. I also explain the development of the hypopharyngeal and the mandibular gland using apoptotic markers and cytoskeletal markers like tubulin and actin. I explain the fundamental developmental plan for the formation of the glands and show that apoptosis plays an important role in the transformation toward an adult gland.
ContributorsNath, Rachna (Author) / Gadau, Juergen (Thesis advisor) / Rawls, Alan (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2018
154237-Thumbnail Image.png
Description
In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet

In desert riparian ecosystems, rivers provide free water but access to that water diminishes with distance producing a steep gradient in the relative importance of water for growth and reproduction of riparian animals and hence, their biodiversity. Previous work suggests that water limited riparian predators eat more prey to meet their water demand where free water is not available. Here I explore the effect of water limitation on prey selection and per capita interaction strengths between a predatory spider ( Hogna antelucana) and two prey species occupying different trophic levels using a controlled field experiment conducted in the riparian forest of the San Pedro River, Cochise County, AZ. Lab measurements of water and energy content revealed that intermediate predators (smaller spiders in the genus Pardosa) had 100-fold higher energy: water ratios than an alternate prey species more basal in the food web (crickets in the genus Gryllus). Given this observation, I hypothesized that water-stressed predatory wolf spiders would select more water-laden crickets but switch to more energy rich Pardosa when water stress was experimentally eliminated. Additionally, I hypothesized that switching by quenched Hogna to Pardosa would reduce predation by Pardosa on Gryllus leading to increased abundance of the basal resource. Finally, I hypothesized that water mediated switching and release of basal prey would be stronger when male Hogna was the apex predator, because female Hogna have higher energetic costs of reproduction and hence, stronger energy limitation. Experimental water additions caused both sexes of Hogna to consume significantly higher numbers of Pardosa but this difference (between water and no-water treatments) did not vary significantly between male and female Hogna treatments. Similarly, strong negative interaction strengths between Hogna and Pardosa led to release of the basal prey species and positive interaction strengths of Hogna on Gryllus. Again strong positive, indirect effects of Hogna on Gryllus did not depend on the sex of the Hogna predator. However, water mediated indirect effects of Hogna (either sex) on Gryllus were the strongest for male Gryllus. These results suggest that water and energy co-dominate foraging decisions by predators and that in managing water-energy balance; predators can modify interaction pathways, sex-ratios of prey populations and trophic dynamics.
ContributorsLeinbach, Israel (Author) / Sabo, John (Thesis advisor) / Harrison, Jon (Committee member) / Johnson, Chadwick (Committee member) / Arizona State University (Publisher)
Created2015