Matching Items (63)
171628-Thumbnail Image.png
Description
Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However,

Transitioning into civilian life after military service is a challenging prospect. It can be difficult to find employment and maintain good mental health, and up to 70 percent of veterans experience homelessness or alcoholism. Upon discharge, many veterans pursue higher education as a way to reintegrate into civilian society. However, many studies have shown that veterans encounter multiple challenges during their attempt to reintegrate into civilian life, including anxiety, a lack of relevant skills, post-traumatic stress disorder (PTSD), and other issues that may lead to communication and interaction challenges in the higher education environment. Student veterans also face challenges in the lack of common language and culture clashes due to differences between military and college culture. This study used a mixed-methods approach to examine the challenges military veterans face related to language use in civilian life. The data was collected from 149 student veterans who completed a questionnaire and 11 student veterans who participated in interviews. Detailed analysis of collected data showed that student veterans experienced some challenges in language use, especially when they initially enrolled in their courses, but they seemed to have overcome challenges after spending time in the university setting. The veterans who had prior college education before joining the military seemed to have a slight advantage, having had experience using the academic language. The study also explored how student veterans chose to share their veteran status with other people in their university community. The findings showed that they strongly identified with their veteran identity and was comfortable sharing their status with others, but they also sometimes were reluctant to share their military experience in details because they were afraid that their peers would not understand.
ContributorsObaid, Naji (Author) / Matsuda, Aya (Thesis advisor) / Smith, David (Committee member) / James, Mark (Committee member) / Arizona State University (Publisher)
Created2022
Description

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique

Studying the so-called ”hidden” phases of quantum materials—phases that do not exist under equilibrium conditions, but can be accessed with light—reveals new insights into the broader field of structural phase transitions. Using terahertz irradiation as well as hard x-ray probes made available by x-ray free electron lasers (XFELs) provides unique capabilities to study phonon dispersion in these materials. Here, we study the cubic peak of the quantum paraelectric strontium titanate (SrTiO3, STO) below the 110 K cubic-to-tetragonal tran- sition. Our results reveal a temperature and field strength dependence of the transverse acoustic mode in agreement with previous work on the avoided crossing occurring at finite wavevector, as well as evidence of anharmonic coupling between transverse optical phonons and a fully symmetric A1g phonon. These results elucidate previous optical studies on STO and hold promise for future studies on the hidden metastable phases of quantum materials.

ContributorsStanton, Jade (Author) / Teitelbaum, Samuel (Thesis director) / Smith, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2023-05
166198-Thumbnail Image.png
Description
People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19%

People with disabilities are underrepresented in the Science, Technology, Engineering, and Math (STEM) workforce (NSF, 2016). One way to increase representation of people with disabilities in STEM fields is by supporting students with disabilities (SWDs) at the undergraduate level. In undergraduate education in the United States, SWDs represent approximately 19% of the undergraduate community (U.S. Census Bureau, 2021). However, SWDs have lower graduation and retention rates. This is particularly true for STEM majors, where SWDs make up about 9% of the STEM community in higher education. The AAC&U has defined a list of High-Impact Practices (HIPs), which are active learning practices and experiences that encourage deep learning by promoting student engagement, and could ultimately support student retention (AAC&U). To date, student-centered disability research has not explored the extent to which SWDs participate in HIPs. We hypothesized that SWDs are less likely than students without disabilities to be involved in HIPs and that students who identify as having severe disabilities would participate in HIPs at lower rates. In this study, we conducted a national survey to examine involvement in HIPs for students with disabilities in STEM. We found that disability status significantly affects the probability of participation in undergraduate research, but is not a significant factor for participation in most other HIPs. We also found that self-reported severity of disability did not significantly impact participation in HIPs, though we observed trends that students reporting higher severity generally reported lower participation in HIPs. Our open-ended responses did indicate that SWDs still faced barriers to participation in HIPs.
ContributorsPais, Danielle (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-05
168318-Thumbnail Image.png
Description
In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for

In this dissertation, the surface interactions of fluorine were studied during atomic layer deposition (ALD) and atomic layer etching (ALE) of wide band gap materials. To enable this research two high vacuum reactors were designed and constructed for thermal and plasma enhanced ALD and ALE, and they were equipped for in-situ process monitoring. Fluorine surface interactions were first studied in a comparison of thermal and plasma enhanced ALD (TALD and PEALD) of AlF3 thin films prepared using hydrogen fluoride (HF), trimethylaluminum (TMA), and H2-plasma. The ALD AlF3 films were compared ¬in-situ using ellipsometry and X-ray photoelectron spectroscopy (XPS). Ellipsometry showed a growth rate of 1.1 Å/ cycle and 0.7 Å/ cycle, at 100°C, for the TALD and PEALD AlF3 processes, respectively. XPS indicated the presence of Al-rich clusters within the PEALD film. The formation of the Al-rich clusters is thought to originate during the H2-plasma step of the PEALD process. The Al-rich clusters were not detected in the TALD AlF3 films. This study provided valuable insight on the role of fluorine in an ALD process. Reactive ion etching is a common dry chemical etch process for fabricating GaN devices. However, the use of ions can induce various defects, which can degrade device performance. The development of low-damage post etch processes are essential for mitigating plasma induced damage. As such, two multistep ALE methods were implemented for GaN based on oxidation, fluorination, and ligand exchange. First, GaN surfaces were oxidized using either water vapor or O2-plasma exposures to produce a thin oxide layer. The oxide layer was addressed using alternating exposures of HF and TMG, which etch Ga2O3 films. Each ALE process was characterized using in-situ using ellipsometry and XPS and ex-situ transmission electron microscopy (TEM). XPS indicated F and O impurities remained on the etched surfaces. Ellipsometry and TEM showed a slight reduction in thickness. The very low ALE rate was interpreted as the inability of the Ga2O3 ALE process to fluorinate the ordered surface oxide on GaN (0001). Overall, these results indicate HF is effective for the ALD of metal fluorides and the ALE of metal oxides.
ContributorsMessina, Daniel C (Author) / Nemanich, Robert J (Thesis advisor) / Goodnick, Stephen (Committee member) / Ponce, Fernando A (Committee member) / Smith, David (Committee member) / Arizona State University (Publisher)
Created2021
165130-Thumbnail Image.png
Description

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and

There is increasing interest in understanding how active learning affects students’ mental health as science courses transition from traditional lecture to active learning. Prior research has found that active learning can both alleviate and exacerbate undergraduate mental health problems. Existing studies have only examined the relationship between active learning and anxiety. No studies have examined the relationship between active learning and undergraduate depression. To address this gap in the literature, we conducted hour-long exploratory interviews with 29 students with depression who had taken active learning science courses across six U.S. institutions. We probed what aspects of active learning practices exacerbate or alleviate depressive symptoms and how students’ depression affects their experiences in active learning. We found that aspects of active learning practices exacerbate and alleviate students’ depressive symptoms, and depression negatively impacts students’ experiences in active learning. The underlying aspects of active learning practices that impact students’ depression fall into four overarching categories: inherently social, inherently engaging, opportunities to compare selves to others, and opportunities to validate or invalidate intelligence. We hope that by better understanding the experiences of undergraduates with depression in active learning courses we can create more inclusive learning environments for these students.

ContributorsAraghi, Tala (Author) / Cooper, Katelyn (Thesis director) / Brownell, Sara (Committee member) / Busch, Carly (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
165842-Thumbnail Image.png
Description
Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM

Mounting evidence suggests that gender biases favoring men and racial biases favoring whites and Asians contribute to the underrepresentation of women and underrepresented minorities (URM) in science, technology, engineering, and mathematics (STEM). Systemic issues caused by gender and racial biases create barriers that prevent women and URM from entering STEM from the structure of education to admission or promotions to higher-level positions. One of these barriers is unconscious biases that impact the quality of letters of recommendation for women and URM and their success in application processes to higher education. Though letters of recommendation provide a qualitative aspect to an application and can reveal the typical performance of the applicant, research has found that the unstructured nature of the traditional recommendation letter allows for gender and racial bias to impact the quality of letters of recommendation. Standardized letters of recommendation have been implemented in various fields and have been found to reduce the presence of bias in recommendation letters. This paper reviews the trends seen across the literature regarding equity in the use of letters of recommendation for undergraduates.
ContributorsKolath, Nina (Author) / Brownell, Sara (Thesis director) / Goodwin, Emma (Committee member) / Barrett, The Honors College (Contributor) / School of Criminology and Criminal Justice (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We

Mental health conditions can impact college students’ social and academic achievements. As such, students may disclose mental illnesses on medical school applications. Yet, no study has investigated to what extent disclosure of a mental health condition impacts medical school acceptance. We designed an audit study to address this gap. We surveyed 99 potential admissions committee members from at least 43 unique M.D.-granting schools in the U.S. Participants rated a fictitious portion of a medical school application on acceptability, competence, and likeability. They were randomly assigned to a condition: an application that explained a low semester GPA due to a mental health condition, an application that explained a low semester GPA due to a physical health condition, or an application that had a low semester GPA but did not describe any health condition. Using ANOVAs, multinomial regression, and open-coding, we found that committee members do not rate applications lower when a mental health condition is revealed. When asked about their concerns regarding the application, 27.0% of participants who received an application that revealed a mental health condition mentioned it as a concern; 14.7% of participants who received an application that revealed a physical health condition mentioned it as a concern. Committee members were also asked about when revealing a mental health condition would be beneficial and when it would be detrimental. This work indicates that medical school admissions committee members do not exhibit a bias towards mental health conditions and provides recommendations on how to discuss mental illness on medical school applications.

ContributorsAbraham, Anna (Author) / Brownell, Sara (Thesis director) / Cooper, Katelyn (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
193028-Thumbnail Image.png
Description
Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and

Similar-identity role models, including instructors, can benefit science undergraduates by enhancing their self-efficacy and sense of belonging. However, for students to have similar-identity role models based on identities that can be hidden, instructors need to disclose their identities. For concealable stigmatized identities (CSIs) – identities that can be hidden and carry negative stereotypes – the impersonal and apolitical culture cultivated in many science disciplines likely makes instructor CSI disclosure unlikely. This dissertation comprises five studies I conducted to assess the presence of instructor role models with CSIs in undergraduate science classrooms and evaluate the impact on undergraduates of instructor CSI disclosure. I find that science instructors report CSIs at lower rates than undergraduates and typically keep these identities concealed. Additionally, I find that women instructors are more likely to disclose their CSIs to students compared to men. To assess the impact of instructor CSI disclosure on undergraduates, I report on findings from a descriptive exploratory study and a controlled field experiment in which an instructor reveals an LGBTQ+ identity. Undergraduates, especially those who also identify as LGBTQ+, benefit from instructor LGBTQ+ disclosure. Additionally, the majority of undergraduate participants agree that an instructor revealing an LGBTQ+ identity during class is appropriate. Together, the results presented in this dissertation highlight the current lack of instructor role models with CSIs and provide evidence of student benefits that may encourage instructors to reveal CSIs to undergraduates and subsequently provide much-needed role models. I hope this work can spark self-reflection among instructors to consider revealing CSIs to students and challenge the assumption that science environments should be devoid of personal identities.
ContributorsBusch, Carly Anne (Author) / Cooper, Katelyn (Thesis advisor) / Brownell, Sara (Thesis advisor) / Collins, James (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2024
ContributorsForgey, Sydney (Performer) / Hickman, Miriam, 1955- (Performer) / Smith, David (Performer) / ASU Library. Music Library (Publisher)
Created2020-03-25
156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018