Matching Items (54)
152840-Thumbnail Image.png
Description
Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many

Many learning models have been proposed for various tasks in visual computing. Popular examples include hidden Markov models and support vector machines. Recently, sparse-representation-based learning methods have attracted a lot of attention in the computer vision field, largely because of their impressive performance in many applications. In the literature, many of such sparse learning methods focus on designing or application of some learning techniques for certain feature space without much explicit consideration on possible interaction between the underlying semantics of the visual data and the employed learning technique. Rich semantic information in most visual data, if properly incorporated into algorithm design, should help achieving improved performance while delivering intuitive interpretation of the algorithmic outcomes. My study addresses the problem of how to explicitly consider the semantic information of the visual data in the sparse learning algorithms. In this work, we identify four problems which are of great importance and broad interest to the community. Specifically, a novel approach is proposed to incorporate label information to learn a dictionary which is not only reconstructive but also discriminative; considering the formation process of face images, a novel image decomposition approach for an ensemble of correlated images is proposed, where a subspace is built from the decomposition and applied to face recognition; based on the observation that, the foreground (or salient) objects are sparse in input domain and the background is sparse in frequency domain, a novel and efficient spatio-temporal saliency detection algorithm is proposed to identify the salient regions in video; and a novel hidden Markov model learning approach is proposed by utilizing a sparse set of pairwise comparisons among the data, which is easier to obtain and more meaningful, consistent than tradition labels, in many scenarios, e.g., evaluating motion skills in surgical simulations. In those four problems, different types of semantic information are modeled and incorporated in designing sparse learning algorithms for the corresponding visual computing tasks. Several real world applications are selected to demonstrate the effectiveness of the proposed methods, including, face recognition, spatio-temporal saliency detection, abnormality detection, spatio-temporal interest point detection, motion analysis and emotion recognition. In those applications, data of different modalities are involved, ranging from audio signal, image to video. Experiments on large scale real world data with comparisons to state-of-art methods confirm the proposed approaches deliver salient advantages, showing adding those semantic information dramatically improve the performances of the general sparse learning methods.
ContributorsZhang, Qiang (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2014
152506-Thumbnail Image.png
Description
In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data

In this thesis, the application of pixel-based vertical axes used within parallel coordinate plots is explored in an attempt to improve how existing tools can explain complex multivariate interactions across temporal data. Several promising visualization techniques are combined, such as: visual boosting to allow for quicker consumption of large data sets, the bond energy algorithm to find finer patterns and anomalies through contrast, multi-dimensional scaling, flow lines, user guided clustering, and row-column ordering. User input is applied on precomputed data sets to provide for real time interaction. General applicability of the techniques are tested against industrial trade, social networking, financial, and sparse data sets of varying dimensionality.
ContributorsHayden, Thomas (Author) / Maciejewski, Ross (Thesis advisor) / Wang, Yalin (Committee member) / Runger, George C. (Committee member) / Mack, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
153196-Thumbnail Image.png
Description
Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse

Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse learning models. A graph is a fundamental way to represent structural information of features. This dissertation focuses on graph-based sparse learning. The first part of this dissertation aims to integrate a graph into sparse learning to improve the performance. Specifically, the problem of feature grouping and selection over a given undirected graph is considered. Three models are proposed along with efficient solvers to achieve simultaneous feature grouping and selection, enhancing estimation accuracy. One major challenge is that it is still computationally challenging to solve large scale graph-based sparse learning problems. An efficient, scalable, and parallel algorithm for one widely used graph-based sparse learning approach, called anisotropic total variation regularization is therefore proposed, by explicitly exploring the structure of a graph. The second part of this dissertation focuses on uncovering the graph structure from the data. Two issues in graphical modeling are considered. One is the joint estimation of multiple graphical models using a fused lasso penalty and the other is the estimation of hierarchical graphical models. The key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which reduces the size of the optimization problem, dramatically reducing the computational cost.
ContributorsYang, Sen (Author) / Ye, Jieping (Thesis advisor) / Wonka, Peter (Thesis advisor) / Wang, Yalin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2014
Description
Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from

Tessellation and Screen-Space Ambient Occlusion are algorithms which have been widely-used in real-time rendering in the past decade. They aim to enhance the details of the mesh, cast better shadow effects and improve the quality of the rendered images in real time. WebGL is a web-based graphics library derived from OpenGL ES used for rendering in web applications. It is relatively new and has been rapidly evolving, this has resulted in it supporting a subset of rendering features normally supported by desktop applications. In this thesis, the research is focusing on evaluating Curved PN-Triangles tessellation with Screen Space Ambient Occlusion (SSAO), Horizon-Based Ambient Occlusion (HBAO) and Horizon-Based Ambient Occlusion Plus (HBAO+) in WebGL-based real-time application and comparing its performance to desktop based application and to discuss the capabilities, limitations and bottlenecks of WebGL 1.0.
ContributorsLi, Chenyang (Author) / Amresh, Ashish (Thesis advisor) / Wang, Yalin (Thesis advisor) / Kobayashi, Yoshihiro (Committee member) / Arizona State University (Publisher)
Created2017
156080-Thumbnail Image.png
Description
While techniques for reading DNA in some capacity has been possible for decades,

the ability to accurately edit genomes at scale has remained elusive. Novel techniques

have been introduced recently to aid in the writing of DNA sequences. While writing

DNA is more accessible, it still remains expensive, justifying the increased interest in

in

While techniques for reading DNA in some capacity has been possible for decades,

the ability to accurately edit genomes at scale has remained elusive. Novel techniques

have been introduced recently to aid in the writing of DNA sequences. While writing

DNA is more accessible, it still remains expensive, justifying the increased interest in

in silico predictions of cell behavior. In order to accurately predict the behavior of

cells it is necessary to extensively model the cell environment, including gene-to-gene

interactions as completely as possible.

Significant algorithmic advances have been made for identifying these interactions,

but despite these improvements current techniques fail to infer some edges, and

fail to capture some complexities in the network. Much of this limitation is due to

heavily underdetermined problems, whereby tens of thousands of variables are to be

inferred using datasets with the power to resolve only a small fraction of the variables.

Additionally, failure to correctly resolve gene isoforms using short reads contributes

significantly to noise in gene quantification measures.

This dissertation introduces novel mathematical models, machine learning techniques,

and biological techniques to solve the problems described above. Mathematical

models are proposed for simulation of gene network motifs, and raw read simulation.

Machine learning techniques are shown for DNA sequence matching, and DNA

sequence correction.

Results provide novel insights into the low level functionality of gene networks. Also

shown is the ability to use normalization techniques to aggregate data for gene network

inference leading to larger data sets while minimizing increases in inter-experimental

noise. Results also demonstrate that high error rates experienced by third generation

sequencing are significantly different than previous error profiles, and that these errors can be modeled, simulated, and rectified. Finally, techniques are provided for amending this DNA error that preserve the benefits of third generation sequencing.
ContributorsFaucon, Philippe Christophe (Author) / Liu, Huan (Thesis advisor) / Wang, Xiao (Committee member) / Crook, Sharon M (Committee member) / Wang, Yalin (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2017
155457-Thumbnail Image.png
Description
Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate

Alzheimer’s Disease (AD), a neurodegenerative disease is a progressive disease that affects the brain gradually with time and worsens. Reliable and early diagnosis of AD and its prodromal stages (i.e. Mild Cognitive Impairment(MCI)) is essential. Fluorodeoxyglucose (FDG) positron emission tomography (PET) measures the decline in the regional cerebral metabolic rate for glucose, offering a reliable metabolic biomarker even on presymptomatic AD patients. PET scans provide functional information that is unique and unavailable using other types of imaging. The computational efficacy of FDG-PET data alone, for the classification of various Alzheimer’s Diagnostic categories (AD, MCI (LMCI, EMCI), Control) has not been studied. This serves as motivation to correctly classify the various diagnostic categories using FDG-PET data. Deep learning has recently been applied to the analysis of structural and functional brain imaging data. This thesis is an introduction to a deep learning based classification technique using neural networks with dimensionality reduction techniques to classify the different stages of AD based on FDG-PET image analysis.

This thesis develops a classification method to investigate the performance of FDG-PET as an effective biomarker for Alzheimer's clinical group classification. This involves dimensionality reduction using Probabilistic Principal Component Analysis on max-pooled data and mean-pooled data, followed by a Multilayer Feed Forward Neural Network which performs binary classification. Max pooled features result into better classification performance compared to results on mean pooled features. Additionally, experiments are done to investigate if the addition of important demographic features such as Functional Activities Questionnaire(FAQ), gene information helps improve performance. Classification results indicate that our designed classifiers achieve competitive results, and better with the additional of demographic features.
ContributorsSingh, Shibani (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2017
155389-Thumbnail Image.png
Description
Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems.

In this dissertation, I carry out the research along the direction with particular focuses on scaling up the optimization of sparse learning for supervised and unsupervised learning problems. For the supervised learning, I firstly propose an asynchronous parallel solver to optimize the large-scale sparse learning model in a multithreading environment. Moreover, I propose a distributed framework to conduct the learning process when the dataset is distributed stored among different machines. Then the proposed model is further extended to the studies of risk genetic factors for Alzheimer's Disease (AD) among different research institutions, integrating a group feature selection framework to rank the top risk SNPs for AD. For the unsupervised learning problem, I propose a highly efficient solver, termed Stochastic Coordinate Coding (SCC), scaling up the optimization of dictionary learning and sparse coding problems. The common issue for the medical imaging research is that the longitudinal features of patients among different time points are beneficial to study together. To further improve the dictionary learning model, I propose a multi-task dictionary learning method, learning the different task simultaneously and utilizing shared and individual dictionary to encode both consistent and changing imaging features.
ContributorsLi, Qingyang (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Thesis advisor) / He, Jingrui (Committee member) / Wang, Yalin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017
158676-Thumbnail Image.png
Description
The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in

The rapid development in acquiring multimodal neuroimaging data provides opportunities to systematically characterize human brain structures and functions. For example, in the brain magnetic resonance imaging (MRI), a typical non-invasive imaging technique, different acquisition sequences (modalities) lead to the different descriptions of brain functional activities, or anatomical biomarkers. Nowadays, in addition to the traditional voxel-level analysis of images, there is a trend to process and investigate the cross-modality relationship in a high dimensional level of images, e.g. surfaces and networks.

In this study, I aim to achieve multimodal brain image fusion by referring to some intrinsic properties of data, e.g. geometry of embedding structures where the commonly used image features reside. Since the image features investigated in this study share an identical embedding space, i.e. either defined on a brain surface or brain atlas, where a graph structure is easy to define, it is straightforward to consider the mathematically meaningful properties of the shared structures from the geometry perspective.

I first introduce the background of multimodal fusion of brain image data and insights of geometric properties playing a potential role to link different modalities. Then, several proposed computational frameworks either using the solid and efficient geometric algorithms or current geometric deep learning models are be fully discussed. I show how these designed frameworks deal with distinct geometric properties respectively, and their applications in the real healthcare scenarios, e.g. to enhanced detections of fetal brain diseases or abnormal brain development.
ContributorsZhang, Wen (Author) / Wang, Yalin (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Braden, B. Blair (Committee member) / Arizona State University (Publisher)
Created2020
158291-Thumbnail Image.png
Description
This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is

This thesis introduces new techniques for clustering distributional data according to their geometric similarities. This work builds upon the optimal transportation (OT) problem that seeks global minimum cost for matching distributional data and leverages the connection between OT and power diagrams to solve different clustering problems. The OT formulation is based on the variational principle to differentiate hard cluster assignments, which was missing in the literature. This thesis shows multiple techniques to regularize and generalize OT to cope with various tasks including clustering, aligning, and interpolating distributional data. It also discusses the connections of the new formulation to other OT and clustering formulations to better understand their gaps and the means to close them. Finally, this thesis demonstrates the advantages of the proposed OT techniques in solving machine learning problems and their downstream applications in computer graphics, computer vision, and image processing.
ContributorsMi, Liang (Author) / Wang, Yalin (Thesis advisor) / Chen, Kewei (Committee member) / Karam, Lina (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020
158811-Thumbnail Image.png
Description
Image super-resolution (SR) is a low-level image processing task, which has manyapplications such as medical imaging, satellite image processing, and video enhancement,
etc. Given a low resolution image, it aims to reconstruct a high resolution
image. The problem is ill-posed since there can be more than one high resolution
image corresponding to the

Image super-resolution (SR) is a low-level image processing task, which has manyapplications such as medical imaging, satellite image processing, and video enhancement,
etc. Given a low resolution image, it aims to reconstruct a high resolution
image. The problem is ill-posed since there can be more than one high resolution
image corresponding to the same low-resolution image. To address this problem, a
number of machine learning-based approaches have been proposed.
In this dissertation, I present my works on single image super-resolution (SISR)
and accelerated magnetic resonance imaging (MRI) (a.k.a. super-resolution on MR
images), followed by the investigation on transfer learning for accelerated MRI reconstruction.
For the SISR, a dictionary-based approach and two reconstruction based
approaches are presented. To be precise, a convex dictionary learning (CDL)
algorithm is proposed by constraining the dictionary atoms to be formed by nonnegative
linear combination of the training data, which is a natural, desired property.
Also, two reconstruction-based single methods are presented, which make use
of (i)the joint regularization, where a group-residual-based regularization (GRR) and
a ridge-regression-based regularization (3R) are combined; (ii)the collaborative representation
and non-local self-similarity. After that, two deep learning approaches
are proposed, aiming at reconstructing high-quality images from accelerated MRI
acquisition. Residual Dense Block (RDB) and feedback connection are introduced
in the proposed models. In the last chapter, the feasibility of transfer learning for
accelerated MRI reconstruction is discussed.
ContributorsDing, Pak Lun Kevin (Author) / Li, Baoxin (Thesis advisor) / Wu, Teresa (Committee member) / Wang, Yalin (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020