Matching Items (4)
Filtering by

Clear all filters

147959-Thumbnail Image.png
Description

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal

An X class solar flare has the potential to remove our satellites from orbit, permanently deactivate our main forms of communication and bring humanity into a technology-free age. By using Geant4, it is possible to simulate several layers of the Earth's atmosphere and send a simulated solar flare and coronal mass ejection. This thesis will show the interaction of photons and protons of various energies with several kilometers of atmosphere.

ContributorsDolghier, Kristian Adrian (Author) / Shovkovy, Igor (Thesis director) / Steinkamp, Brian (Committee member) / Economics Program in CLAS (Contributor) / College of Integrative Sciences and Arts (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135129-Thumbnail Image.png
Description
A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to

A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to examine this problem in depth. It was found that in some cases, over 75% of students could not solve the most basic mathematics problems. We asked questions involving right triangles, vector addition, vector direction, systems of equations, and arithmetic, to give a few examples. The correct response rates were typically between 25% and 75%, which is worrying, because these problems are far simpler than the typical problem encountered in an introductory quantitative physics course. This thesis uncovered a few common problem solving strategies that were not particularly effective. When solving trigonometry problems, 13% of students wrote down the mnemonic "SOH CAH TOA," but a chi-squared test revealed that this was not a statistically significant factor in getting the correct answer, and was actually detrimental in certain situations. Also, about 50% of students used a tip-to-tail method to add vectors. But there is evidence to suggest that this method is not as effective as using components. There are also a number of problem solving strategies that successful students use to solve mathematics problems. Using the components of a vector increases student success when adding vectors and examining their direction. Preliminary evidence also suggests that repetitive trigonometry practice may be the best way to improve student performance on trigonometry problems. In addition, teaching students to use a wide variety of algebraic techniques like the distributive property may help them from getting stuck when working through problems. Finally, evidence suggests that checking work could eliminate up to a third of student errors.
ContributorsJones, Matthew Isaiah (Author) / Meltzer, David (Thesis director) / Peng, Xihong (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
164928-Thumbnail Image.png
Description

This thesis examines the interpretations derived from the Kac Ring Model, and the adding of a modification to the original model via “kick backs,” which can be interpreted to represent time reversals in the individual Kac rings. The results of this modification are analyzed, and their implications explored. There are

This thesis examines the interpretations derived from the Kac Ring Model, and the adding of a modification to the original model via “kick backs,” which can be interpreted to represent time reversals in the individual Kac rings. The results of this modification are analyzed, and their implications explored. There are three main parts to this thesis. Part 1 is a literature review which explains the working principles of the original Kac ring and explores its numerous applications. Part 2 describes the software and the theoretical & computational methodology used to implement the model and gather data. Part 3 analyzes the data gathered and makes a conclusion about its implications. There is an appendix included which contains some figures from Part 3 in a larger size, as it wasn’t possible to make the figures bigger within the text due to formatting.

ContributorsGavrilov, Alexander (Author) / Sukharev, Maxim (Thesis director) / Chamberlin, Ralph (Committee member) / Peng, Xihong (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor) / Department of Information Systems (Contributor)
Created2022-05
Description
The vast majority of matter found within the universe is from the dark sector composed of 75% dark energy and 20% dark matter. While the accelerated expansion rate of the universe is attributable to dark energy, dark matter is fundamentally defined as an unknown substance that interacts gravitationally with its

The vast majority of matter found within the universe is from the dark sector composed of 75% dark energy and 20% dark matter. While the accelerated expansion rate of the universe is attributable to dark energy, dark matter is fundamentally defined as an unknown substance that interacts gravitationally with its surroundings. The research presented here investigates the methods derived from observational signatures to construct theoretical models of dark matter.
ContributorsFigueroa, Natalie (Author) / Shovkovy, Igor (Thesis director) / Lebed, Richard (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05