Matching Items (2)
Filtering by

Clear all filters

157802-Thumbnail Image.png
Description
Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth of Ge1-xSnx binaries through Molecular Beam Epitaxy (MBE) started in

Sn-based group IV materials such as Ge1-xSnx and Ge1-x-ySixSny alloys have great potential for developing Complementary Metal Oxide Semiconductor (CMOS) compatible devices on Si because of their tunable band structure and lattice constants by controlling Si and/or Sn contents. Growth of Ge1-xSnx binaries through Molecular Beam Epitaxy (MBE) started in the early 1980s, producing Ge1-xSnx epilayers with Sn concentrations varying from 0 to 100%. A Chemical Vapor Deposition (CVD) method was developed in the early 2000s for growing Ge1-xSnx alloys of device quality, by utilizing various chemical precursors. This method dominated the growth of Ge1-xSnx alloys rapidly because of the great crystal quality of Ge1-xSnx achieved. As the first practical ternary alloy completely based on group IV elements, Ge1-x-ySixSny decouples bandgap and lattice constant, becoming a prospective CMOS compatible alloy. At the same time, Ge1-x-ySixSny ternary system could serve as a thermally robust alternative to Ge1-ySny binaries given that it becomes a direct semiconductor at a Sn concentration of 6%-10%. Ge1-x-ySixSny growths by CVD is summarized in this thesis. With the Si/Sn ratio kept at ~3.7, the ternary alloy system is lattice matched to Ge, resulting a tunable direct bandgap of 0.8-1.2 eV. With Sn content higher than Si content, the ternary alloy system could have an indirect-to-direct transition, as observed for Ge1-xSnx binaries. This thesis summarizes the development of Ge1-xSnx and Ge1-x-ySixSny alloys through MBE and CVD in recent decades and introduces an innovative direct injection method for synthesizing Ge1-x-ySixSny ternary alloys with Sn contents varying from 5% to 12% and Si contents kept at 1%-2%. Grown directly on Si (100) substrates in a Gas-phase Molecular Epitaxy (GSME) reactor, both intrinsic and n-type doped Ge1-x-ySixSny with P with thicknesses of 250-760 nm have been achieved by deploying gas precursors Ge4H10, Si4H10, SnD4 and P(SiH3)3 at the unprecedented low growth temperatures of 190-220 °C. Compressive strain is reduced and crystallinity of the Ge1-x-ySixSny epilayer is improved after rapid thermal annealing (RTA) treatments. High Resolution X-ray Diffraction (HR-XRD), Rutherford Backscattering Spectrometry (RBS), cross-sectional Transmission Electron Microscope (XTEM) and Atomic Force Microscope (AFM) have been combined to characterize the structural properties of the Ge1-x-ySixSny samples, indicating good crystallinity and flat surfaces.
ContributorsHu, Ding (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2019
156807-Thumbnail Image.png
Description
The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded

The work described in this thesis explores the synthesis of new semiconductors in the Si-Ge-Sn system for application in Si-photonics. Direct gap Ge1-ySny (y=0.12-0.16) alloys with enhanced light emission and absorption are pursued. Monocrystalline layers are grown on Si platforms via epitaxy-driven reactions between Sn- and Ge-hydrides using compositionally graded buffer layers that mitigate lattice mismatch between the epilayer and Si platforms. Prototype p-i-n structures are fabricated and are found to exhibit direct gap electroluminescence and tunable absorption edges between 2200 and 2700 nm indicating applications in LEDs and detectors. Additionally, a low pressure technique is described producing pseudomorphic Ge1-ySny alloys in the compositional range y=0.06-0.17. Synthesis of these materials is achieved at ultra-low temperatures resulting in nearly defect-free films that far exceed the critical thicknesses predicted by thermodynamic considerations, and provide a chemically driven route toward materials with properties typically associated with molecular beam epitaxy.

Silicon incorporation into Ge1-ySny yields a new class of Ge1-x-ySixSny (y>x) ternary alloys using reactions between Ge3H8, Si4H10, and SnD4. These materials contain small amounts of Si (x=0.05-0.08) and Sn contents of y=0.1-0.15. Photoluminescence studies indicate an intensity enhancement relative to materials with lower Sn contents (y=0.05-0.09). These materials may serve as thermally robust alternatives to Ge1-ySny for mid-infrared (IR) optoelectronic applications.

An extension of the above work is the discovery of a new class of Ge-like Group III-V-IV hybrids with compositions Ga(As1–xPx)Ge3 (x=0.01-0.90) and (GaP)yGe5–2y related to Ge1-x-ySixSny in structure and properties. These materials are prepared by chemical vapor deposition of reactive Ga-hydrides with P(GeH3)3 and As(GeH3)3 custom precursors as the sources of P, As, and Ge incorporating isolated GaAs and GaP donor-acceptor pairs into diamond-like Ge-based structures. Photoluminescence studies reveal bandgaps in the near-IR and large bowing of the optical behavior relative to linear interpolation of the III-V and Ge end members. Similar materials in the Al-Sb-B-P system are also prepared and characterized. The common theme of the above topics is the design and fabrication of new optoelectronic materials that can be fully compatible with Si-based technologies for expanding the optoelectronic capabilities of Ge into the mid-IR and beyond through compositional tuning of the diamond lattice.
ContributorsWallace, Patrick Michael (Author) / Kouvetakis, John (Thesis advisor) / Menéndez, Jose (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2018