Matching Items (90)
150063-Thumbnail Image.png
Description
Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures.

Systemic lupus erytematosus (SLE) is an autoimmune disease where the immune system is reactive to self antigens resulting in manifestations like glomerulonephritis and arthritis. The immune system also affects the central nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations such as depression, cognitive impairment, psychosis and seizures. A subset of pathogenic brain-reactive autoantibodies (BRAA) is hypothesized to bind to integral membrane brain proteins, affecting their function, leading to CNS-SLE. I have tested this BRAA hypothesis, using our lupus-mouse model the MRL/lpr mice, and have found it to be a reasonable explanation for some of the manifestations of CNS-SLE. Even when the MRL/lpr had a reduced autoimmune phenotype, their low BRAA sera levels correlated with CNS involvement. The correlation existed between BRAA levels to integral membrane protein and depressive-like behavior. These results were the first to show a correlation between behavioral changes and BRAA levels from brain membrane antigen as oppose to cultured neuronal cells. More accurate means of predicting and diagnosing lupus and CNS-SLE is necessary. Using microarray technology I was able to determine peptide sets that could be predictive and diagnostic of lupus and each specific CNS manifestation. To knowledge no test currently exists that can effectively diagnose lupus and distinguish between each CNS manifestations. Using the peptide sets, I was able to determine possible natural protein biomarkers for each set as well as for five monoclonal BRAA from one MRL/lpr. These biomarkers can provide specific targets for therapy depending on the manifestation. It was necessary to investigate how these BRAA enter the brain. I hypothesized that substance P plays a role in altering the blood-brain barrier (BBB) allowing these BRAA to enter and affect brain function, when bound to its neurokinin-1 receptor (NK-1R). Western blotting results revealed an increase in the levels of NK-1R in the brain of the MRL/lpr compared to the MRL/mp. These MRL/lpr with increased levels of both NK-1R and BRAA displayed CNS dysfunction. Together, these results demonstrate that NK-1R may play a role in CNS manifestations. Overall, the research conducted here, add to the role that BRAA are playing in CNS-lupus.
ContributorsWilliams, Stephanie (Author) / Hoffman, Steven A (Thesis advisor) / Conrad, Cheryl (Committee member) / Chen, Julian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2011
149837-Thumbnail Image.png
Description
The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement

The failure to withhold inappropriate behavior is a central component of most impulse control disorders, including Attention Deficit Hyperactivity Disorder (ADHD). The present study examined the effects of housing environment and methylphenidate (a drug often prescribed for ADHD) on the performance of rats in two response inhibition tasks: differential reinforcement of low rate (DRL) and fixed minimum interval (FMI). Both tasks required rats to wait a fixed amount of time (6 s) before emitting a reinforced response. The capacity to withhold the target response (volitional inhibition) and timing precision were estimated on the basis of performance in each of the tasks. Paradoxically, rats housed in a mildly enriched environment that included a conspecific displayed less volitional inhibition in both tasks compared to rats housed in an isolated environment. Enriched housing, however, increased timing precision. Acute administration of methylphenidate partially reversed the effects of enriched housing. Implications of these results in the assessment and treatment of ADHD-related impulsivity are discussed.
ContributorsHill, Jade C (Author) / Sanabria, Federico (Thesis advisor) / Killeen, Peter (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2011
Description
Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the

Restraint stress is the most commonly used laboratory stressor. It is difficult to characterize as psychological or physical, because past studies show psychological features, but the nature of confinement adds a physical dimension. This was the first study to investigate how experience with restraint stress affects brain response to the next stress without a physical burden. Pair-housed adult male rats were transported to a novel context and restrained or left undisturbed (6hr). The next day, rats were returned to the same context and were either restrained or left undisturbed in the context (n=8/group). After 90min, rats were euthanized to determine functional activation in limbic structures using Fos immunohistochemistry and to measure HPA axis reactivity through blood serum corticosterone levels. Regardless of day 1 experience, context exposure on day 2 enhanced Fos expression in CA1 and CA3 of the hippocampus, basolateral amygdala, and central amygdala. Conversely, other regions and corticosterone levels demonstrated modulation from the previous day's experience. Specifically, rats that were placed back into the restraint context but not restrained on day 2 showed enhanced Fos expression in the dentate gyrus suprapyramidal blade (DGSup), and infralimbic cortex (IL). Also Fos expression was attenuated in rats that received two restraint exposures in the IL and medial amygdala (MEA), suggesting habituation. Only the DG infrapyramidal blade (DGInf) showed enhanced Fos expression to restraint on day 2 without influence of the previous day. While context predominately directed Fos activation, prior experience with restraint influenced Fos expression in the DGSup, IL, MEA and corticosterone levels to support restraint having psychological components.
ContributorsAnouti, P. Danya (Author) / Conrad, D. Cheryl (Thesis director) / Hammer, Ronald (Committee member) / Hoffman, N. Ann (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137704-Thumbnail Image.png
Description
Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to

Cardiovascular disease is one of the most deadly outcomes of end stage renal disease. Bioelectrical impedance is a intriguing, yet unproven method of measuring fluid buildup in the heart, and is marketed as a early diagnostic tool for onset of cardiovascular disease. In this study, selenium supplements were given to a cohort of dialysis patients in the Phoenix metro area and their fluid tolerance was measured with thoracic biolectrical impedance. BNP was used as a correlate to see if bioelectrical impedance was correlated with heart disease. The study found no correlation between BNP and bioelectrical impedance and thus was not an accurate diagnostic tool in a medical setting.
ContributorsBrown, Patrick Michael (Author) / Johnston, Carol (Thesis director) / Orchinik, Miles (Committee member) / Tingey, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
147512-Thumbnail Image.png
Description

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the phase of the addiction cycle in male rats. In particular, the selective 5HT1BR agonist, CP94,253, facilitates cocaine intake during maintenance of daily cocaine self-administration. Paradoxically, after 21 days of abstinence, CP94,253 attenuates cocaine intake in male rats on a low effort fixed ratio 5 (FR5) and a high effort progressive ratio (PR) schedule of reinforcement. PR measures motivation as it requires an exponentially increasing number of lever responses to obtain the next reinforcer after a successful reinforcer. In contrast to male rats, we recently found CP94,253 attenuates cocaine intake before and after abstinence on an FR5 schedule of reinforcement in female rats, suggesting the attenuating effects of CP94,253 on cocaine intake is not dependent on a period of abstinence in females. However, the effect of CP94,253 on motivation for cocaine has not yet been examined in female rats. Therefore, we addressed this gap in the present study. Female Sprague-Dawley rats were trained to self-administer 0.375 mg/kg, IV cocaine or to obtain sucrose pellets (45 mg) on a PR schedule of reinforcement and were then pretreated with vehicle or CP94,253 (3.2, 5.6 and 10 mg/kg, SC) prior to their self-administration session. A separate cohort was pretreated with CP94,253 to examine the effects of CP94,253 on cocaine-seeking behavior (i.e., operant responses when cocaine is no longer available) and spontaneous locomotion after 21 or 60 days of abstinence. The preliminary findings show that CP94,253 has minimal impacts on decreasing cocaine intake on a PR schedule in female rats but decreases cue reactivity up to 60 days after abstinence in female rats. These findings suggest that 5-HT1BR agonists may be useful treatments for cocaine craving.

ContributorsRuscitti, Brielle Allesandra (Author) / Neisewander, Janet (Thesis director) / Powell, Gregory (Committee member) / Scott, Samantha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
151807-Thumbnail Image.png
Description
The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol,

The maternal separation (MS) paradigm is an animal model of early life stress. Animals subjected to MS during the first two weeks of life display altered behavioral and neuroendocrinological stress responses as adults. MS also produces altered responsiveness to and self-administration (SA) of various drugs of abuse including cocaine, ethanol, opioids, and amphetamine. Methamphetamine (METH) causes great harm to both the individual user and to society; yet, no studies have examined the effects of MS on METH SA. This study was performed to examine the effects of MS on the acquisition of METH SA, extinction, and reinstatement of METH-seeking behavior in adulthood. Given the known influence of early life stress and drug exposure on epigenetic processes, group differences in levels of the epigenetic marker methyl CpG binding protein 2 (MeCP2) in the nucleus accumbens (NAc) core were also investigated. Long-Evans pups and dams were separated on postnatal days (PND) 2-14 for either 180 (MS180) or 15 min (MS15). Male offspring were allowed to acquire METH SA (0.05 mg/kg/infusion) in 15 2-hr daily sessions starting at PND67, followed by extinction training and cue-induced reinstatement of METH-seeking behavior. Rats were then assessed for MeCP2 levels in the NAc core by immunohistochemistry. The MS180 group self-administered significantly more METH and acquired SA earlier than the MS15 group. No group differences in extinction or cue-induced reinstatement were observed. MS15 rats had significantly elevated MeCP2-immunoreactive cells in the NAc core as compared to MS180 rats. Together, these data suggest that MS has lasting influences on METH SA as well as epigenetic processes in the brain reward circuitry.
ContributorsLewis, Candace (Author) / Olive, Micheal F (Thesis advisor) / Conrad, Cheryl (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
152186-Thumbnail Image.png
Description
Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic

Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function.
ContributorsHutchinson, Katie Marie (Author) / Duch, Carsten (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newfeld, Stuart (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
152023-Thumbnail Image.png
Description
Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation

Intermittent social defeat stress induces cross-sensitization to psychostimulants and escalation of drug self-administration. These behaviors could result from the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. Brain-derived neurotrophic factor (BDNF) in the ventral tegmental area (VTA) is persistently elevated after social defeat stress, and may contribute to the stress-induced neuroadaptation in the mesocorticolimbic dopamine circuit. BDNF modulates synaptic plasticity, and facilitates stress- and drug-induced neuroadaptations in the mesocorticolimbic system. The present research examined the role of mesolimbic BDNF signaling in social defeat stress-induced cross-sensitization to psychostimulants and the escalation of cocaine self-administration in rats. We measured drug taking behavior with the acquisition, progressive ratio, and binge paradigms during self-administration. With BDNF overexpression in the ventral tegmental area (VTA), single social defeat stress-induced cross-sensitization to amphetamine (AMPH) was significantly potentiated. VTA-BDNF overexpression also facilitates acquisition of cocaine self-administration, and a positive correlation between the level of VTA BDNF and drug intake during 12 hour binge was observed. We also found significant increase of DeltaFosB expression in the nucleus accumbens (NAc), the projection area of the VTA, in rats received intra-VTA BDNF overexpression. We therefore examined whether BDNF signaling in the NAc is important for social defeat stress-induced cross-sensitization by knockdown of the receptor of BDNF (neurotrophin tyrosine kinase receptor type 2, TrkB) there. NAc TrkB knockdown prevented social defeat stress-induced cross-sensitization to psychostimulant. Also social defeat stress-induced increase of DeltaFosB in the NAc was prevented by TrkB knockdown. Several other factors up-regulated by stress, such as the GluA1 subunit of Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and BDNF in the VTA were also prevented. We conclude that BDNF signaling in the VTA increases social defeat stress-induced vulnerability to psychostimulants, manifested as potentiated cross-sensitization/sensitization to AMPH and escalation of cocaine self-administration. Also BDNF signaling in the NAc is necessary for the stress-induced neuroadaptation and behavioral sensitization to psychostimulants. Therefore, TrkB in the NAc could be a therapeutic target to prevent stress-induced vulnerability to drugs of abuse in the future. DeltaFosB in the NAc shell could be a neural substrate underlying persistent cross-sensitization and augmented cocaine self-administration induced by social defeat stress.
ContributorsWang, Junshi (Author) / Hammer, Ronald (Thesis advisor) / Feuerstein, Burt (Committee member) / Nikulina, Ella (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2013
151450-Thumbnail Image.png
Description
Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize

Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize stimuli that are emotionally salient and potentially predictive of positive or negative outcomes essential to survival. Olfaction is the only sensory modality in mammals where sensory inputs bypass conventional thalamic gating before entering higher emotional or cognitive brain regions. Thus, olfactory bulb circuits may have a heavier burden of sensory gating compared to other primary sensory circuits. How do the primary synapses in an olfactory system "learn"' in order to optimally gate or filter sensory stimuli? I hypothesize that centrifugal neuromodulator serotonin serves as a signaling mechanism by which primary olfactory circuits can experience learning informed sensory gating. To test my hypothesis, I conditioned genetically-modified mice using reward or fear olfactory-cued learning paradigms and used pharmacological, electrophysiological, immunohistochemical, and optical imaging approaches to assay changes in serotonin signaling or functional changes in primary olfactory circuits. My results indicate serotonin is a key mediator in the acquisition of olfactory fear memories through the activation of its type 2A receptors in the olfactory bulb. Functionally within the first synaptic relay of olfactory glomeruli, serotonin type 2A receptor activation decreases excitatory glutamatergic drive of olfactory sensory neurons through both presynaptic and postsynaptic mechanisms. I propose that serotonergic signaling decreases excitatory drive, thereby disconnecting olfactory sensory neurons from odor responses once information is learned and its behavioral significance is consolidated. I found that learning induced chronic changes in the density of serotonin fibers and receptors, which persisted in glomeruli encoding the conditioning odor. Such persistent changes could represent a sensory gate stabilized by memory. I hypothesize this ensures that the glomerulus encoding meaningful odors are much more sensitive to future serotonin signaling as such arousal cues arrive from centrifugal pathways originating in the dorsal raphe nucleus. The results advocate that a simple associative memory trace can be formed at primary sensory synapses to facilitate optimal sensory gating in mammalian olfaction.
ContributorsLi, Monica (Author) / Tyler, William J (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Duch, Carsten (Committee member) / Neisewander, Janet (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2012
152055-Thumbnail Image.png
Description
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform

To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform undergraduate teaching. Only a limited number of studies have explored the pedagogical content knowledge of postsecondary level teachers. This study was conducted to characterize the PCK of biology faculty and explore the factors influencing their PCK. Data included semi-structured interviews, classroom observations, documents, and instructional artifacts. A qualitative inquiry was designed to conduct an in-depth investigation focusing on the PCK of six biology instructors, particularly the types of knowledge they used for teaching biology, their perceptions of teaching, and the social interactions and experiences that influenced their PCK. The findings of this study reveal that the PCK of the biology faculty included eight domains of knowledge: (1) content, (2) context, (3) learners and learning, (4) curriculum, (5) instructional strategies, (6) representations of biology, (7) assessment, and (8) building rapport with students. Three categories of faculty PCK emerged: (1) PCK as an expert explainer, (2) PCK as an instructional architect, and (3) a transitional PCK, which fell between the two prior categories. Based on the interpretations of the data, four social interactions and experiences were found to influence biology faculty PCK: (1) teaching experience, (2) models and mentors, (3) collaborations about teaching, and (4) science education research. The varying teaching perspectives of the faculty also influenced their PCK. This study shows that the PCK of biology faculty for teaching large introductory courses at large research institutions is heavily influenced by factors beyond simply years of teaching experience and expert content knowledge. Social interactions and experiences created by the institution play a significant role in developing the PCK of biology faculty.
ContributorsHill, Kathleen M. (Author) / Luft, Julie A. (Thesis advisor) / Baker, Dale (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013