Matching Items (32)
Filtering by

Clear all filters

147512-Thumbnail Image.png
Description

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the

In 2014 alone, 40% of all drug abuse-related emergency department visits involved cocaine, and despite the detrimental effects there is still no FDA approved treatment for cocaine use disorders (CUDs; Dawn, 2014). Studies show that serotonin 1B receptor (5HT1BR) agonists modulate cocaine abuse-related behaviors in opposite directions depending on the phase of the addiction cycle in male rats. In particular, the selective 5HT1BR agonist, CP94,253, facilitates cocaine intake during maintenance of daily cocaine self-administration. Paradoxically, after 21 days of abstinence, CP94,253 attenuates cocaine intake in male rats on a low effort fixed ratio 5 (FR5) and a high effort progressive ratio (PR) schedule of reinforcement. PR measures motivation as it requires an exponentially increasing number of lever responses to obtain the next reinforcer after a successful reinforcer. In contrast to male rats, we recently found CP94,253 attenuates cocaine intake before and after abstinence on an FR5 schedule of reinforcement in female rats, suggesting the attenuating effects of CP94,253 on cocaine intake is not dependent on a period of abstinence in females. However, the effect of CP94,253 on motivation for cocaine has not yet been examined in female rats. Therefore, we addressed this gap in the present study. Female Sprague-Dawley rats were trained to self-administer 0.375 mg/kg, IV cocaine or to obtain sucrose pellets (45 mg) on a PR schedule of reinforcement and were then pretreated with vehicle or CP94,253 (3.2, 5.6 and 10 mg/kg, SC) prior to their self-administration session. A separate cohort was pretreated with CP94,253 to examine the effects of CP94,253 on cocaine-seeking behavior (i.e., operant responses when cocaine is no longer available) and spontaneous locomotion after 21 or 60 days of abstinence. The preliminary findings show that CP94,253 has minimal impacts on decreasing cocaine intake on a PR schedule in female rats but decreases cue reactivity up to 60 days after abstinence in female rats. These findings suggest that 5-HT1BR agonists may be useful treatments for cocaine craving.

ContributorsRuscitti, Brielle Allesandra (Author) / Neisewander, Janet (Thesis director) / Powell, Gregory (Committee member) / Scott, Samantha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135839-Thumbnail Image.png
Description
Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America alone, cocaine is one of the most identifiable and addictive drugs. Cocaine produces major neurological changes in the central nervous

Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America alone, cocaine is one of the most identifiable and addictive drugs. Cocaine produces major neurological changes in the central nervous system, including widespread changes in gene expression. MicroRNAs are small, non-coding transcripts that regulate gene expression post-transcriptionally by preventing translation into function protein. Given that one miRNA can target several genes simultaneously, they have the potential to attenuate drug-induced changes in gene expression. We previously found that the microRNA miR-495 regulates several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc), an important brain region involved in reward and motivation. Furthermore, acute cocaine decreases miR-495 expression and increases ARG expression in the NAc. Therefore, the aim of this thesis was to determine the effect of miR-495 overexpression in the NAc on cocaine self-administration behavior. Male Sprague Dawley rats were trained to lever press for cocaine and were then infused with a lentivirus into the NAc that either overexpressed green fluorescent protein (GFP, control) or miR-495+GFP. We then tested the rats on several doses of cocaine on both a fixed ratio (5) and progressive ratio (PR) schedule of reinforcement. We performed a follow-up experiment that included the same viral manipulation and testing, but the reinforcer was switched to food pellets. We found that NAc miR-495 overexpression reduces cocaine self-administration on a PR, but not an FR5, schedule of reinforcement. We found no effects of miR-495 overexpression on food reinforcement. These data suggest that NAc miR-495 regulates genes involved in motivation for cocaine, but not general motivation based on the data with food reinforcement. Future studies will seek to determine the specific target genes responsible for our behavioral effects.
ContributorsGalles, Nick (Author) / Neisewander, Janet (Thesis director) / Bastle, Ryan (Committee member) / Foster, M. (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
137015-Thumbnail Image.png
Description
Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine

Substance abuse disorders affect 15.3 million people worldwide. The field has primarily focused on dopaminergic drugs as treatments for substance use disorders. However, recent work has demonstrated the potential of serotonergic compounds to treat substance abuse. Specifically, the serotonin 1B receptor (5-HT1BR), a Gi-coupled receptor located throughout the mesocorticolimbic dopamine system, has been implicated in the incentive motivational and rewarding effects of cocaine. Our research suggests that the stimulation of 5-HT1BRs produces different effects at various time points in the addiction cycle. During maintenance of chronic cocaine administration, 5-HT1BR stimulation has a facilitative effect on the reinforcing properties of cocaine. However 5-HT1BR stimulation exhibits inhibitory effects on reinforcement during prolonged abstinence from cocaine. The aim of this study was to examine the possibility of a switch in the functional role of 5-HT1BRs in the locomotor effects of cocaine at different time points of chronic cocaine administration in mice. We found that the 5-HT1BR agonist CP 94,253 increased locomotor activity in mice tested one day after the last chronic cocaine administration session regardless of whether the chronic treatment was cocaine or saline and regardless of challenge injection (i.e., cocaine or saline). Yet after abstinence, CP 94,253 induced a decrease in locomotor activity in mice challenged with saline and attenuated cocaine-induced locomotion relative to cocaine challenge after vehicle pretreatment. These findings suggest that a switch in the functional role of 5-HT1BR is observed at different stages of the addiction cycle and further suggest that clinical applications of drugs acting on 5-HT1BR should consider these effects.
ContributorsBrunwasser, Samuel Joshua (Author) / Neisewander, Janet (Thesis director) / Pentkowski, Nathan (Committee member) / Der-Ghazarian, Taleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Department of Psychology (Contributor)
Created2014-05
137078-Thumbnail Image.png
Description
N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM).

N. fowleri has been coined the "brain-eating" amoeba, receiving increased attention from both the media and scientific research since its discovery in 1961. While infection is extremely rare, it infects humans through the nasal passage after exposure to contaminated, warm freshwater, causing the brain destroying reaction primary amoebic meningoencephalitis (PAM). Those infected with PAM present with symptoms such as severe headache and loss of the sense of smell and will typically die within a week thereafter. This fulminant pathogenicity has led to increased awareness of N. fowleri through the news and public health centers. This thesis aims to comprehensively review N. fowleri, the epidemiology and pathology of PAM, interventions against the disease, and how the news has portrayed N. fowleri and PAM. This thesis also strives to raise ethical and thought-provoking questions about how much media coverage and research funding N. fowleri receives given its rarity, as well as explore its value and novel contributions to understanding disease as a whole.
ContributorsFerrell, Chantell Isabell (Author) / Buetow, Kenneth (Thesis director) / Neisewander, Janet (Committee member) / McGlynn, Katherine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136985-Thumbnail Image.png
Description
Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine
ContributorsLynn, Jeffrey Spencer (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Bastle, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137583-Thumbnail Image.png
Description
Previous findings from our lab have demonstrated that nicotine and social reward have synergistic effects when experienced together versus when experienced separately. The purpose of this experiment is to understand the neural mechanisms underlying this synergistic effect by quantifying Fos protein, a marker for neural activation, in various brain regions.

Previous findings from our lab have demonstrated that nicotine and social reward have synergistic effects when experienced together versus when experienced separately. The purpose of this experiment is to understand the neural mechanisms underlying this synergistic effect by quantifying Fos protein, a marker for neural activation, in various brain regions. We utilized the conditioning place preference (CPP) model to assess reward. Four groups of adolescent male rats (n=120) were given either nicotine (Nic) (0.1 mg/kg/mL) or saline (Sal) and were placed in the CPP apparatus either with a social partner (Soc) or alone (Iso). Thus, groups were: 1.)Sal+Iso, 2).Sal+Soc, 3).Nic+Iso, 4).Nic+Soc. Brains of some the rats (n=40) were collected for Fos staining 90 minutes after the last conditioning session to obtain Fos data in response to direct exposure to the stimuli. The following regions were analyzed for Fos expression: central amygdala (CeA), medial amygdala (MeA), basolateral amygdala (BLA), nucleus accumbens core (NAcCore), and nucleus accumbens shell (NAcShell). Place preference changes occurred in socially-conditioned groups reflecting social reward and in nicotine-conditioned groups reflecting nicotine reward. As expected, the Sal+Iso control group failed to display a preference change. Fos data revealed a significant increase in Fos expression in the CeA, MeA, NAcCore and NAcShell for socially-conditioned animals and a significant decrease in the NAcCore for nicotine-conditioned groups. Experiencing both social and nicotine rewards together appeared to produce greater activation in the BLA. However, there was an increase in Fos expression in the negative control group relative to Nic+Iso group. The results of CPP suggest that social, nicotine and their combination are rewarding. The combination of the nicotine and social reward could have been more rewarding than social and nicotine separately, but the test was not sensitive to reward magnitude. The increase in Fos expression in the negative control group in the BLA could be due to isolation stress. Overall, these results suggest that these brain regions had greater activation to social reward.
ContributorsGoenaga, Julianna Gloria (Author) / Neisewander, Janet (Thesis director) / Orchinik, Miles (Committee member) / Olive, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137532-Thumbnail Image.png
Description
The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase

The organic cation transporter 3 (OCT3) is a polyspecific monoamine transporter
found in the human and rat brain. In Rats, OCT3 is the only known monoamine transporter inhibited by physiological concentrations of corticosteroids. We hypothesized that CORT- mediated inhibition of OCT3 blocks the clearance of serotonin (5-HT) leading to an increase 5-HT receptor-mediated signaling. In experiment 1, due to conflicting reports on the location of OCT3 mRNA in the rat brain, in situ hybridization was performed on brain tissue sections. RNA was extracted from rat brain tissue, reverse transcribed into cDNA, and then polymerase chain reaction (PCR) was performed to generate riboprobe templates. The riboprobe templates were then used for in vitro transcription of digoxigenin (DIG)-labeled riboprobes complementary to OCT3. In experiment 2, 12 rats from an identical cohort were exposed to a chronic restraint stress paradigm (two hours/day for seven days, STRESS group), while the other 12 remained in their home cages (CTRL group). Twenty-four hours after the last stressor, all animals were euthanized and their brains immediately removed and frozen. Bilateral tissue punches were collected from 300μm coronal sections from the CA1 region of the dorsal hippocampus, basolateral amygdala (BLA), and dorsomedial hypothalamus (DMH). The relative OCT2, OCT3, and 5HT2a mRNA levels from each tissue punch were determined via quantitative real-time polymerase chain reaction (qPCR). The results of experiment 1 confirmed the presence of OCT3 mRNA in the CA1, amygdala, and the DMH. The results of experiment 2 show that chronic restraint stress did not alter gene expression for 5-HT2A, OCT2, and OCT3. These data may help reveal new information involving OCT3’s role in the hippocampus, amygdala and DMH in regards to localization and mRNA expression levels after exposure to a stressor.
ContributorsTompkins, Heather Camila (Author) / Orchinik, Miles (Thesis director) / Neisewander, Janet (Committee member) / Talboom, Joshua (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137424-Thumbnail Image.png
Description
Cocaine is a highly addictive psychostimulant that is widely used around the world. It is far more cost effective to curb this problem through treatment than by any other method as medicinal drug treatment is 15 times more effective than law enforcement at reducing the societal costs of cocaine use

Cocaine is a highly addictive psychostimulant that is widely used around the world. It is far more cost effective to curb this problem through treatment than by any other method as medicinal drug treatment is 15 times more effective than law enforcement at reducing the societal costs of cocaine use as determine by RAND corp. In a previous paper from our lab, it was found that via virally mediated introduction of additional 5-HT1B receptors into the nucleus accumbens there was a leftward shift in the cocaine intake dose-response curve in animals that were self-administering cocaine by pressing a lever. These findings suggest that 5-HT1B receptor action enhances the reinforcing effects of cocaine. However, when animals were given a 21-day period of prolonged abstinence and then tested for cocaine intake, it was determined that 5-HT1B receptor action had the opposite effect of decreasing cocaine intake presumably due to a decrease in the reinforcing effects of cocaine: [16]. The experiment in the current paper was devised to further test this finding via pharmacological means using the 5-HT1B agonist CP 94253 to increase stimulation of 5-HT1B receptors. Animals were trained to self-administer by pressing a lever on fixed ratio schedules of cocaine reinforcement given at 0.75 mg/kg and 0.075 mg/kg doses of cocaine. These doses allowed us to examine changes in self-administration on both the ascending and descending limbs of the inverted u-shaped cocaine dose-effect curve. Our results indicated that in animals given CP 94253 exhibited a decrease in responding on both the ascending and descending limbs of the dose response curve demonstrating a downward shift after prolonged abstinence. These exciting results suggest that the agonist decreases cocaine intake, and therefore, the agonist may be a useful treatment for cocaine dependence.
ContributorsYanamandra, Krishna Teja (Author) / Neisewander, Janet (Thesis director) / Goldstein, Elliott (Committee member) / Pentkowski, Nathan (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
135681-Thumbnail Image.png
Description
As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research

As the incidence of dementia continues to rise, the need for an effective and non-invasive method of intervention has become increasingly imperative. Music therapy has exhibited these qualities in addition to relatively low implementation costs, therefore establishing itself as a promising means of therapeutic intervention. In this review, current research was investigated in order to determine its effectiveness and uncover the neurochemical mechanisms that lead to positive manifestations such as improved memory recall, increased social affiliation, increased motivation, and decreased anxiety. Music therapy has been found to improve several aspects of memory recall. One proposed mechanism involves temporal entrainment, during which the melodic structures present in music provide a framework for chunking information. Although entrainment's role in the treatment of motor defects has been thoroughly studied, its role in treating cognitive disorders is still relatively new. Musicians have also been shown to demonstrate extensive plastic changes; therefore, it is hypothesized that non-musicians may also glean some benefits from engaging in music. Social affiliation has been found to increase due to increases in endogenous oxytocin. Oxytocin has also been shown to strengthen hippocampal spike transmission, a promising outcome for Alzheimer's patients. An increase in motivation has also been found to occur due to music's ability to tap into the reward center of the brain. Dopaminergic transmission between the VTA, NAc and higher functioning regions such as the OFC and hypothalamus has been revealed. Additionally, relaxing music decreases stress levels and modifies associated autonomic processes, i.e. heart rate, blood pressure, and respiratory rate. On the contrary, stimulating music has been found to initiate sympathetic nervous system activity. This is thought to occur by either a reflexive brainstem response or stimulus interpretation by the amygdala.
ContributorsFlores, Catalina Nicole (Author) / Redding, Kevin (Thesis director) / Hoffer, Julie (Committee member) / Neisewander, Janet (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05