Matching Items (12)
Filtering by

Clear all filters

151322-Thumbnail Image.png
Description
With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated

With the rapid growth of power systems and the concomitant technological advancements, the goal of achieving smart grids is no longer a vision but a foreseeable reality. Hence, the existing grids are undergoing infrastructural modifications to achieve the diverse characteristics of a smart grid. While there are many subjects associated with the operation of smart grids, this dissertation addresses two important aspects of smart grids: increased penetration of renewable resources, and increased reliance on sensor systems to improve reliability and performance of critical power system components. Present renewable portfolio standards are changing both structural and performance characteristics of power systems by replacing conventional generation with alternate energy resources such as photovoltaic (PV) systems. The present study investigates the impact of increased penetration of PV systems on steady state performance as well as transient stability of a large power system which is a portion of the Western U.S. interconnection. Utility scale and residential rooftop PVs are added to replace a portion of conventional generation resources. While steady state voltages are observed under various PV penetration levels, the impact of reduced inertia on transient stability performance is also examined. The simulation results obtained effectively identify both detrimental and beneficial impacts of increased PV penetration both for steady state stability and transient stability performance. With increased penetration of the renewable energy resources, and with the current loading scenario, more transmission system components such as transformers and circuit breakers are subject to increased stress and overloading. This research work explores the feasibility of increasing system reliability by applying condition monitoring systems to selected circuit breakers and transformers. A very important feature of smart grid technology is that this philosophy decreases maintenance costs by deploying condition monitoring systems that inform the operator of impending failures; or the approach can ameliorate problematic conditions. A method to identify the most critical transformers and circuit breakers with the aid of contingency ranking methods is presented in this study. The work reported in this dissertation parallels an industry sponsored study in which a considerable level of industry input and industry reported concerns are reflected.
ContributorsEftekharnejad, Sara (Author) / Heydt, Gerald (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Si, Jennie (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
150480-Thumbnail Image.png
Description
Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at a low variable cost and produce less greenhouse gases as compared to conventional generators. However, some of the complex issues with renewable resource integration are due to their intermittent and non-dispatchable characteristics. Furthermore, most renewable resources are location constrained and are usually located in regions with insufficient transmission facilities. In order to deal with the challenges presented by renewable resources as compared to conventional resources, the transmission network expansion planning procedures need to be modified. New high voltage lines need to be constructed to connect the remote renewable resources to the existing transmission network to serve the load centers. Moreover, the existing transmission facilities may need to be reinforced to accommodate the large scale penetration of renewable resource. This thesis proposes a methodology for transmission expansion planning with large-scale integration of renewable resources, mainly solar and wind generation. An optimization model is used to determine the lines to be constructed or upgraded for several scenarios of varying levels of renewable resource penetration. The various scenarios to be considered are obtained from a production cost model that analyses the effects that renewable resources have on the transmission network over the planning horizon. A realistic test bed was created using the data for solar and wind resource penetration in the state of Arizona. The results of the production cost model and the optimization model were subjected to tests to ensure that the North American Electric Reliability Corporation (NERC) mandated N-1 contingency criterion is satisfied. Furthermore, a cost versus benefit analysis was performed to ensure that the proposed transmission plan is economically beneficial.
ContributorsHariharan, Sruthi (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
151050-Thumbnail Image.png
Description
In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits.

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and this trend is expected to continue. To facilitate an optimal use of the distributed infrastructure, the control of the energy demand on a feeder node in the distribution system has been formulated as a multiobjective optimization problem and a solution algorithm has been developed. In multiobjective problems the Pareto optimality criterion is generally applied, and commonly used solution algorithms are decision-based and heuristic. In contrast, a mathematically-robust technique called normal boundary intersection has been modeled for use in this work, and the control variable is solved via separable programming. The Roy Billinton Test System (RBTS) has predominantly been used to demonstrate the application of the formulation in distribution system control. A parallel processing environment has been used to replicate the distributed nature of controls at many points in the distribution system. Interactions between the real-time prices in a distribution feeder and the nodal prices at the aggregated load bus have been investigated. The application of the formulations in an islanded operating condition has also been demonstrated. The DLMP formulation has been validated using the test bed systems and a practical framework for its application in distribution engineering has been presented. The multiobjective optimization yields excellent results and is found to be robust for finer time resolutions. The work shown in this report is applicable to, and has been researched under the aegis of the Future Renewable Electric Energy Delivery and Management (FREEDM) center, which is a generation III National Science Foundation engineering research center headquartered at North Carolina State University.
ContributorsRanganathan Sathyanarayana, Bharadwaj (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2012
151244-Thumbnail Image.png
Description
The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.
ContributorsHaughton, Daniel Andrew (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2012
154870-Thumbnail Image.png
Description
As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to

As the world embraces a sustainable energy future, alternative energy resources, such as wind power, are increasingly being seen as an integral part of the future electric energy grid. Ultimately, integrating such a dynamic and variable mix of generation requires a better understanding of renewable generation output, in addition to power grid systems that improve power system operational performance in the presence of anticipated events such as wind power ramps. Because of the stochastic, uncontrollable nature of renewable resources, a thorough and accurate characterization of wind activity is necessary to maintain grid stability and reliability. Wind power ramps from an existing wind farm are studied to characterize persistence forecasting errors using extreme value analysis techniques. In addition, a novel metric that quantifies the amount of non-stationarity in time series wind power data was proposed and used in a real-time algorithm to provide a rigorous method that adaptively determines training data for forecasts. Lastly, large swings in generation or load can cause system frequency and tie-line flows to deviate from nominal, so an anticipatory MPC-based secondary control scheme was designed and integrated into an automatic generation control loop to improve the ability of an interconnection to respond to anticipated large events and fluctuations in the power system.
ContributorsGanger, David (Author) / Vittal, Vijay (Thesis advisor) / Zhang, Junshan (Thesis advisor) / Hedman, Kory (Committee member) / Undrill, John (Committee member) / Arizona State University (Publisher)
Created2016
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
Description
Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the

Power flow calculation plays a significant role in power system studies and operation. To ensure the reliable prediction of system states during planning studies and in the operating environment, a reliable power flow algorithm is desired. However, the traditional power flow methods (such as the Gauss Seidel method and the Newton-Raphson method) are not guaranteed to obtain a converged solution when the system is heavily loaded.

This thesis describes a novel non-iterative holomorphic embedding (HE) method to solve the power flow problem that eliminates the convergence issues and the uncertainty of the existence of the solution. It is guaranteed to find a converged solution if the solution exists, and will signal by an oscillation of the result if there is no solution exists. Furthermore, it does not require a guess of the initial voltage solution.

By embedding the complex-valued parameter α into the voltage function, the power balance equations become holomorphic functions. Then the embedded voltage functions are expanded as a Maclaurin power series, V(α). The diagonal Padé approximant calculated from V(α) gives the maximal analytic continuation of V(α), and produces a reliable solution of voltages. The connection between mathematical theory and its application to power flow calculation is described in detail.

With the existing bus-type-switching routine, the models of phase shifters and three-winding transformers are proposed to enable the HE algorithm to solve practical large-scale systems. Additionally, sparsity techniques are used to store the sparse bus admittance matrix. The modified HE algorithm is programmed in MATLAB. A study parameter β is introduced in the embedding formula βα + (1- β)α^2. By varying the value of β, numerical tests of different embedding formulae are conducted on the three-bus, IEEE 14-bus, 118-bus, 300-bus, and the ERCOT systems, and the numerical performance as a function of β is analyzed to determine the “best” embedding formula. The obtained power-flow solutions are validated using MATPOWER.
ContributorsLi, Yuting (Author) / Tylavsky, Daniel J (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
154542-Thumbnail Image.png
Description
Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS)

Two significant trends of recent power system evolution are: (1) increasing installa-tion of dynamic loads and distributed generation resources in distribution systems; (2) large-scale renewable energy integration at the transmission system level. A majority of these devices interface with power systems through power electronic converters. However, existing transient stability (TS) simulators are inadequate to represent the dynamic behavior of these devices accurately. On the other hand, simulating a large system using an electromagnetic transient (EMT) simulator is computationally impractical. EMT-TS hybrid simulation approach is an alternative to address these challenges. Furthermore, to thoroughly analyze the increased interactions among the transmission and distribution systems, an integrated modeling and simulation approach is essential.

The thesis is divided into three parts. The first part focuses on an improved hybrid simulation approach and software development. Compared to the previous work, the pro-posed approach has three salient features: three-sequence TS simulation algorithm, three-phase/three-sequence network equivalencing and flexible switching of the serial and par-allel interaction protocols.

The second part of the thesis concentrates on the applications of the hybrid simula-tion tool. The developed platform is first applied to conduct a detailed fault-induced de-layed voltage recovery (FIDVR) study on the Western Electricity Coordinating Council (WECC) system. This study uncovers that after a normally cleared single line to ground fault at the transmission system could cause air conditioner motors to stall in the distribu-tion systems, and the motor stalling could further propagate to an unfaulted phase under certain conditions. The developed tool is also applied to simulate power systems inter-faced with HVDC systems, including classical HVDC and the new generation voltage source converter (VSC)-HVDC system.

The third part centers on the development of integrated transmission and distribution system simulation and an advanced hybrid simulation algorithm with a capability of switching from hybrid simulation mode to TS simulation. Firstly, a modeling framework suitable for integrated transmission and distribution systems is proposed. Secondly, a power flow algorithm and a diakoptics based dynamic simulation algorithm for the integrated transmission and distribution system are developed. Lastly, the EMT-TS hybrid simulation algorithm is combined with the diakoptics based dynamic simulation algorithm to realize flexible simulation mode switching to increase the simulation efficiency.
ContributorsHuang, Qiuhua (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John M. (Committee member) / Heydt, Gerald T. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
154495-Thumbnail Image.png
Description
Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts

Present distribution infrastructure is designed mainly for uni-directional power flow with well-controlled generation. An increase in the inverter-interfaced photovoltaic (PV) systems requires a thorough re-examination of the design, operation, protection and control of distribution systems. In order to understand the impact of high penetration of PV generation, this work conducts an automated and detailed modeling of a power distribution system. The simulation results of the modeled distribution feeder have been verified with the field measurements.

Based on the feeder model, this work studies the impact of the PV systems on voltage profiles under various scenarios, including reallocation of the PV systems, reactive power support from the PV inverters, and settings of the load-tap changing transformers in coordination with the PV penetration. Design recommendations have been made based on the simulation results to improve the voltage profiles in the feeder studied.

To carry out dynamic studies related to high penetration of PV systems, this work proposes a differential algebraic equation (DAE) based dynamic modeling and analysis method. Different controllers including inverter current controllers, anti-islanding controllers and droop controllers, are designed and tested in large systems. The method extends the capability of the distribution system analysis tools, to help conduct dynamic analyses in large unbalanced distribution systems.

Another main contribution of this work is related to the investigation of the PV impacts on the feeder protection coordination. Various protection coordination types, including fuse-fuse, recloser-fuse, relay-fuse and relay-recloser have been studied. The analyses provide a better understanding of the relay and recloser settings under different configurations of the PV interconnection transformers, PV penetration levels, and fault types.

A decision tree and fuzzy logic based fault location identification process has also been proposed in this work. The process is composed of the off-line training of the decision tree, and the on-line analysis of the fault events. Fault current contribution from the PV systems, as well as the variation of the fault resistance have been taken into consideration. Two actual fault cases with the event data recorded were used to examine the effectiveness of the fault identification process.
ContributorsTang, Yingying (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Heydt, Gerald (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2016
155012-Thumbnail Image.png
Description
This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will

This thesis provides a cost to benefit assessment of the proposed next generation distribution system, the Future Renewable Electric Energy Distribution Management (FREEDM) system. In this thesis, a probabilistic study is conducted to determine the payback period for an investment made in the FREEDM distribution system. The stochastic study will help in performing a detailed analysis in estimating the probability density function and statistics associated with the payback period.

This thesis also identifies several parameters associated with the FREEDM system, which are used in the cost benefit study to evaluate the investment and several direct and indirect benefits. Different topologies are selected to represent the FREEDM test bed. Considering the cost of high speed fault isolation devices, the topology design is selected based on the minimum number of fault isolation devices constrained by enhanced reliability. A case study is also performed to assess the economic impact of energy storage devices in the solid state transformers so that the fault isolation devices may be replaced by conventional circuit breakers.

A reliability study is conducted on the FREEDM distribution system to examine the customer centric reliability index, System Average Interruption Frequency Index (SAIFI). It is observed that the SAIFI was close to 0.125 for the FREEDM distribution system. In addition, a comparison study is performed based on the SAIFI for a representative U.S. distribution system and the FREEDM distribution system.

The payback period is also determined by adopting a theoretical approach and the results are compared with the Monte Carlo simulation outcomes to understand the variation in the payback period. It is observed that the payback period is close to 60 years but if an annual rebate is considered, the payback period reduces to 20 years. This shows that the FREEDM system has a significant potential which cannot be overlooked. Several direct and indirect benefits arising from the FREEDM system have also been discussed in this thesis.
ContributorsDinakar, Abhishek (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016