Matching Items (203)
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148024-Thumbnail Image.png
Description

Radiation hardening of electronic devices is generally necessary when designing for the space environment. Non-volatile memory technologies are of particular concern when designing for the mitigation of radiation effects. Among other radiation effects, single-event upsets can create bit flips in non-volatile memories, leading to data corruption. In this paper, a

Radiation hardening of electronic devices is generally necessary when designing for the space environment. Non-volatile memory technologies are of particular concern when designing for the mitigation of radiation effects. Among other radiation effects, single-event upsets can create bit flips in non-volatile memories, leading to data corruption. In this paper, a Verilog implementation of a Reed-Solomon error-correcting code is considered for its ability to mitigate the effects of single-event upsets on non-volatile memories. This implementation is compared with the simpler procedure of using triple modular redundancy.

ContributorsSmith, Aidan W (Author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148033-Thumbnail Image.png
Description

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number

Every communication system has a receiver and a transmitter. Irrespective if it is wired or wireless.The future of wireless communication consists of a massive number of transmitters and receivers. The question arises, can we use computer vision to help wireless communication? To satisfy the high data requirement, a large number of antennas are required. The devices that employ large-antenna arrays have other sensors such as RGB camera, depth camera, or LiDAR sensors.These vision sensors help us overcome the non-trivial wireless communication challenges, such as beam blockage prediction and hand-over prediction.This is further motivated by the recent advances in deep learning and computer vision that can extract high-level semantics from complex visual scenes, and the increasing interest of leveraging machine/deep learning tools in wireless communication problems.[1] <br/><br/>The research was focused solely based on technology like 3D cameras,object detection and object tracking using Computer vision and compression techniques. The main objective of using computer vision was to make Milli-meter Wave communication more robust, and to collect more data for the machine learning algorithms. Pre-build lossless and lossy compression algorithms, such as FFMPEG, were used in the research. An algorithm was developed that could use 3D cameras and machine learning models such as YOLOV3, to track moving objects using servo motors and low powered computers like the raspberry pi or the Jetson Nano. In other words, the receiver could track the highly mobile transmitter in 1 dimension using a 3D camera. Not only that, during the research, the transmitter was loaded on a DJI M600 pro drone, and then machine learning and object tracking was used to track the highly mobile drone. In order to build this machine learning model and object tracker, collecting data like depth, RGB images and position coordinates were the first yet the most important step. GPS coordinates from the DJI M600 were also pulled and were successfully plotted on google earth. This proved to be very useful during data collection using a drone and for the future applications of position estimation for a drone using machine learning. <br/><br/>Initially, images were taken from transmitter camera every second,and those frames were then converted to a text file containing hex-decimal values. Each text file was then transmitted from the transmitter to receiver, and on the receiver side, a python code converted the hex-decimal to JPG. This would give an efect of real time video transmission. However, towards the end of the research, an industry standard, real time video was streamed using pre-built FFMPEG modules, GNU radio and Universal Software Radio Peripheral (USRP). The transmitter camera was a PI-camera. More details will be discussed as we further dive deep into this research report.

ContributorsSeth, Madhav (Author) / Alkhateeb, Ahmed (Thesis director) / Alrabeiah, Muhammad (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148065-Thumbnail Image.png
Description

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide

Self-efficacy in engineering, engineering identity, and coping in engineering have been shown in previous studies to be highly important in the advancement of one’s development in the field of engineering. Through the creation and deployment of a 17 question survey, undergraduate and first year masters students were asked to provide information on their engagement at their university, their demographic information, and to rank their level of agreement with 22 statements relating to the aforementioned ideas. Using the results from the collected data, exploratory factor analysis was completed to identify the factors that existed and any correlations. No statistically significant correlations between the identified three factors and demographic or engagement information were found. There needs to be a significant increase in the data sample size for statistically significant results to be found. Additionally, there is future work needed in the creation of an engagement measure that successfully reflects the level and impact of participation in engineering activities beyond traditional coursework.

ContributorsJones, Elizabeth Michelle (Author) / Ganesh, Tirupalavanam (Thesis director) / Graham, Kaely (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147964-Thumbnail Image.png
Description

In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis have been working on the research, design, and implementation of a<br/>Verilog- and Python-based error correction code using a Reed-Solomon method<br/>to

In collaboration with Moog Broad Reach and Arizona State University, a<br/>team of five undergraduate students designed a hardware design solution for<br/>protecting flash memory data in a spaced-based radioactive environment. Team<br/>Aegis have been working on the research, design, and implementation of a<br/>Verilog- and Python-based error correction code using a Reed-Solomon method<br/>to identify bit changes of error code. For an additional senior design project, a<br/>Python code was implemented that runs statistical analysis to identify whether<br/>the error correction code is more effective than a triple-redundancy check as well<br/>as determining if the presence of errors can be modeled by a regression model.

ContributorsSalls, Demetra Helen (Author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137699-Thumbnail Image.png
DescriptionExploring solar cell model alternatives using electrochemically deposited dendrites as a form of current collection to increase efficiency and top electrode transparency.
ContributorsKrawczyk, Joseph Robert (Author) / Kozicki, Michael (Thesis director) / Roedel, Ronald (Committee member) / Gonzalez Velo, Yago (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
152024-Thumbnail Image.png
Description
Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of

Achievement of many long-term goals requires sustained practice over long durations. Examples include goals related to areas of high personal and societal benefit, such as physical fitness, which requires a practice of frequent exercise; self-education, which requires a practice of frequent study; or personal productivity, which requires a practice of performing work. Maintaining these practices can be difficult, because even though obvious benefits come with achieving these goals, an individual's willpower may not always be sufficient to sustain the required effort. This dissertation advocates addressing this problem by designing novel interfaces that provide people with new practices that are fun and enjoyable, thereby reducing the need for users to draw upon willpower when pursuing these long-term goals. To draw volitional usage, these practice-oriented interfaces can integrate key characteristics of existing activities, such as music-making and other hobbies, that are already known to draw voluntary participation over long durations. This dissertation makes several key contributions to provide designers with the necessary tools to create practice-oriented interfaces. First, it consolidates and synthesizes key ideas from fields such as activity theory, self-determination theory, HCI design, and serious leisure. It also provides a new conceptual framework consisting of heuristics for designing systems that draw new users, plus heuristics for making systems that will continue drawing usage from existing users over time. These heuristics serve as a collection of useful ideas to consider when analyzing or designing systems, and this dissertation postulates that if designers build these characteristics into their products, the resulting systems will draw more volitional usage. To demonstrate the framework's usefulness as an analytical tool, it is applied as a set of analytical lenses upon three previously-existing experiential media systems. To demonstrate its usefulness as a design tool, the framework is used as a guide in the development of an experiential media system called pdMusic. This system is installed at public events for user studies, and the study results provide qualitative support for many framework heuristics. Lastly, this dissertation makes recommendations to scholars and designers on potential future ways to examine the topic of volitional usage.
ContributorsWallis, Isaac (Author) / Ingalls, Todd (Thesis advisor) / Coleman, Grisha (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2013
Description
The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels

The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels with detachable insoles that will relieve tired feet based on the principle of reflexology. The product integrates traditional flexible insoles with Arduino computing and the result is a functional surface that can ease the pain of the wearer. This paper introduces the product and with it, under-explored opportunities to customize your own high heels at home. Essentially, each consumer will have the ability to personalize and switch out their style without sacrificing comfort. Soon, a consumer will be a designer.
ContributorsNguyen, Nhi N. (Author) / Ingalls, Todd (Thesis director) / Gigantino, Josh (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136150-Thumbnail Image.png
Description
The fundamental concept that I have developed and applied throughout my college career is to try to discover innovative ways to combine the experimental production techniques that I learned in my classes with more traditional songwriting structures. In doing so, I explore the line that distinguishes the two from each

The fundamental concept that I have developed and applied throughout my college career is to try to discover innovative ways to combine the experimental production techniques that I learned in my classes with more traditional songwriting structures. In doing so, I explore the line that distinguishes the two from each other and instill a foreign, yet familiar feeling within the listener. With this approach in mind, I created audio for a variety of media and attempted to push myself in terms of genre and production, ultimately allowing myself to survey a multitude of instruments and audio effects outside of what I learned in my classes. In my portfolio, I have an organized layout of my audio work within the categories of film soundtracks, game audio, and original music, along with how to contact me and information about the licensing of my music. In learning how to create a professional online portfolio, I learned more about the business side of music and where I stand regarding how people listen to my music or use it within their own projects. The process of creating my portfolio taught me a lot about the relationships that I want to pursue with artists that I work with in the future. My portfolio can be found at: markusrennemann.weebly.com
ContributorsRennemann, Markus Horst Florian (Author) / Ingalls, Todd (Thesis director) / Paine, Garth (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05