Matching Items (27)
137601-Thumbnail Image.png
Description
Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A

Thirty six percent of Americans are obese and thirty three percent are overweight; obesity has become a known killer in the U.S. yet its prevalence has maintained a firm grasp on the U.S. population and continues to spread across the globe as other countries slowly adopt the American lifestyle. A survey was compiled collecting demographic and body mass index (BMI) information, as well as Tanofsky-Kraff’s (2009) “Assess Eating in the Absence of Hunger” survey questions. The survey used for this study was emailed out to Arizona State University students in Barrett, The Honors College, and the ASU School of Nutrition and Health Promotion listservs. A total of 457 participants completed the survey, 72 males and 385 females (mean age, 24.5±7.7 y; average body mass index (BMI), 23.4 ± 4.8 [a BMI of 25-29.9 is classified as overweight]). When comparing BMI with the living situation, 71% of obese students were living at home with family versus off campus with friends or alone. For comparison, 45% of normal weight students lived at home with family.  These data could help structure prevention plans targeting college students by focusing on weight gain prevention at the family level. Results from the Tanofsky-Kraff (2009) survey revealed there was not a significant relationship between external or physical cues and BMI in men or women, but there was a significant positive correlation between emotional cues and BMI in women only. Anger and sadness were the emotional cues in women related to initiating consumption past satiation and consumption following several hours of fasting. Although BMI was inversely related to physical activity in this sample (r = -0.132; p=0.005), controlling for physical activity did not impact the significant associations of BMI with anger or sadness (P>0.05).  This information is important in targeting prevention programs to address behavioral change and cognitive awareness of the effects of emotion on over-consumption.
ContributorsGarza, Andrea Marie (Author) / Johnston, Carol (Thesis director) / Jacobs, Mark (Committee member) / Coletta, Dawn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137286-Thumbnail Image.png
Description
New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared

New-onset diabetes after kidney transplantation (NODAT) occurs in 20% of kidney transplant patients. In 5 patients who are at risk for new-onset diabetes after kidney transplantation, skeletal muscle gene expression profiling was performed both before and after kidney transplant. The differences in gene expression before and after transplant were compared in order to identify specific genes that could be linked to developing NODAT. These findings could open new avenues for future research.
ContributorsLowery, Clint Curtis (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Willis, Wayne (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
132268-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment. Keywords: Type II Diabetes mellitus, Gene Set Enrichment Analysis, genetic variants, KEGG Insulin Pathway, gene-regulatory pathway
ContributorsBucklin, Lindsay (Co-author) / Davis, Vanessa (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / Nyarige, Verah (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132756-Thumbnail Image.png
Description
This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develo

This research project investigated known and novel differential genetic variants and their associated molecular pathways involved in Type II diabetes mellitus for the purpose of improving diagnosis and treatment methods. The goal of this investigation was to 1) identify the genetic variants and SNPs in Type II diabetes to develop a gene regulatory pathway, and 2) utilize this pathway to determine suitable drug therapeutics for prevention and treatment. Using a Gene Set Enrichment Analysis (GSEA), a set of 1000 gene identifiers from a Mayo Clinic database was analyzed to determine the most significant genetic variants related to insulin signaling pathways involved in Type II Diabetes. The following genes were identified: NRAS, KRAS, PIK3CA, PDE3B, TSC1, AKT3, SOS1, NEU1, PRKAA2, AMPK, and ACC. In an extensive literature review and cross-analysis with Kegg and Reactome pathway databases, novel SNPs located on these gene variants were identified and used to determine suitable drug therapeutics for treatment. Overall, understanding how genetic mutations affect target gene function related to Type II Diabetes disease pathology is crucial to the development of effective diagnosis and treatment. This project provides new insight into the molecular basis of the Type II Diabetes, serving to help untangle the regulatory complexity of the disease and aid in the advancement of diagnosis and treatment.
ContributorsDavis, Vanessa Brooke (Co-author) / Bucklin, Lindsay (Co-author) / Holechek, Susan (Thesis director) / Wang, Junwen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134507-Thumbnail Image.png
Description
Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic

Obesity and related health disparities including type 2 diabetes disproportionately impact Latino youth. These health disparities may be the result of gene-environment interactions, but limited research has examined these interactions in the pediatric age group. Lifestyle intervention is the cornerstone for preventing diabetes among high-risk populations and epigenetic and genetic factors may help explain the biological mechanisms underlying diabetes risk reduction following lifestyle changes. MicroRNAs (miRNAs) are small, non-coding RNA’s that regulate gene expression and have emerged as potential biomarkers for predicting type 2 diabetes risk in adults but have yet to be applied to youth. Therefore, the purpose of this study was to identify changes in miRNA expression among Latino youth with prediabetes (4 female/2 male, ages 14-16, BMI percentile 99 ±.2) who participated in a 12-week lifestyle intervention focused on increasing physical activity and improving nutrition-related behaviors.
ContributorsKarch, Jamie (Co-author) / Day, Samantha (Co-author) / Shaibi, Gabriel (Thesis director) / Coletta, Dawn (Committee member) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171582-Thumbnail Image.png
Description
High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular

High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular transition (tipping points). In Chapter 2 of this dissertation, I present a novel cell-type specific and co-expression-based tipping point detection method to identify target gene (TG) versus transcription factor (TF) pairs whose differential co-expression across time points drive biological changes in different cell types and the time point when these changes are observed. This method was applied to scRNA-seq data sets from a SARS-CoV-2 study (18 time points), a human cerebellum development study (9 time points), and a lung injury study (18 time points). Similarly, leveraging transcriptome data across treatment time points, I developed methodologies to identify treatment-induced and cell-type specific differentially co-expressed pairs (DCEPs). In part one of Chapter 3, I presented a pipeline that used a series of statistical tests to detect DCEPs. This method was applied to scRNA-seq data of patients with non-small cell lung cancer (NSCLC) sequenced across cancer treatment times. However, this pipeline does not account for correlations among multiple single cells from the same sample and correlations among multiple samples from the same patient. In Part 2 of Chapter 3, I presented a solution to this problem using a mixed-effect model. In Chapter 4, I present a summary of my work that focused on the cross-species analysis of circRNA transcriptome time series data. I compared circRNA profiles in neonatal pig and mouse hearts, identified orthologous circRNAs, and discussed regulation mechanisms of cardiomyocyte proliferation and myocardial regeneration conserved between mouse and pig at different time points.
ContributorsNyarige, Verah Mocheche (Author) / Liu, Li (Thesis advisor) / Wang, Junwen (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
161916-Thumbnail Image.png
Description
This dissertation presents three novel algorithms with real-world applications to genomic oncology. While the methodologies presented here were all developed to overcome various challenges associated with the adoption of high throughput genomic data in clinical oncology, they can be used in other domains as well. First, a network informed feature

This dissertation presents three novel algorithms with real-world applications to genomic oncology. While the methodologies presented here were all developed to overcome various challenges associated with the adoption of high throughput genomic data in clinical oncology, they can be used in other domains as well. First, a network informed feature ranking algorithm is presented, which shows a significant increase in ability to select true predictive features from simulated data sets when compared to other state of the art graphical feature ranking methods. The methodology also shows an increased ability to predict pathological complete response to preoperative chemotherapy from genomic sequencing data of breast cancer patients utilizing domain knowledge from protein-protein interaction networks. Second, an algorithm that overcomes population biases inherent in the use of a human reference genome developed primarily from European populations is presented to classify microsatellite instability (MSI) status from next-generation-sequencing (NGS) data. The methodology significantly increases the accuracy of MSI status prediction in African and African American ancestries. Finally, a single variable model is presented to capture the bimodality inherent in genomic data stemming from heterogeneous diseases. This model shows improvements over other parametric models in the measurements of receiver-operator characteristic (ROC) curves for bimodal data. The model is used to estimate ROC curves for heterogeneous biomarkers in a dataset containing breast cancer and cancer-free specimen.
ContributorsSaul, Michelle (Author) / Dinu, Valentin (Thesis advisor) / Liu, Li (Committee member) / Wang, Junwen (Committee member) / Arizona State University (Publisher)
Created2021
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18