Matching Items (93)
135270-Thumbnail Image.png
Description
The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell

The work for this thesis was done in conjunction to that of my capstone project, which focused on understanding the effects of powder re-use on products built via Direct Metal Laser Sintering (DMLS), a specific additive manufacturing (AM) technique where powder particles are sintered together to form final parts. Honeywell Aerospace helped support this research by providing materials and mentorship; this work will play a key role in their decision to implement DMLS and other AM methods on a larger scale. Whereas the capstone focuses on the technical details of constructing characterization equipment, analyzing data, and formulating a concluding recommendation on whether the powder can be re-used, the thesis attempts to put this body of work in its greater context, surveying the economic and environmental effects of additive manufacturing technologies with a slant towards the aerospace industry. Shifts in the supply chain with aircraft parts and how this affects costs are explored, as well as how the quality and reliability of additively manufactured parts differs from their traditionally manufactured counterparts and the effects of this on related industries and purchasers.
ContributorsMurella, Anoosha Sainagaki (Author) / Adams, James (Thesis director) / Tasooji, Amaneh (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were

The goal of the paper was to examine the fatigue mechanisms of polymers and silicone based elastomers. The mechanisms of fatigue due to crazing: the alignment of polymer chains to the stress axis, and shear banding: the localized orientation of the polymer by the shear stresses from two planes, were discussed in depth in this paper. Crazing only occurs in tensile stress, is initiated on the surface of the material, and only occurs in brittle polymers. Crazing also accounts for a 40-60% decrease in density, causing localized weakening of the material and a concentration in stress. This is due to a decrease in effective cross sectional area. The mechanism behind discontinuous growth bands was also discussed to be the cause of cyclic crazing. Shear banding only occurs in ductile polymers and can result in the failure of polymers via necking. Furthermore, the high fatigue resistance of silicone elastomers was discussed in this paper. This conclusion was made because of the lack of fatigue mechanisms (crazing, discontinuous growth bands, and shears banding) in the observed elastomer's microstructure after the samples had undergone fatigue tests. This was done through an analysis of room temperature vulcanized silicone adhesives, a heat-curing silicone elastomer, and a self-curing transparent silicone rubber. Fatigue of room temperature vulcanized silicon was observed, however this was reasoned to be the failure of the adhesion of the elastomer to the steel substrate instead of the microstructure itself. Additionally, the significance of fatigue in real world applications was discussed using SouthWest Airlines Flight 812 as an example.
ContributorsWong, Christopher Stanley (Author) / Adams, James (Thesis director) / Krause, Stephen (Committee member) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171777-Thumbnail Image.png
Description
Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter

Organic light-emitting diodes (OLEDs) have been successfully implemented in various display applications owing to rapid advancements in material design and device architecture. Their success in the display industry has ignited a rising interest in applying OLEDs for solid-state lighting applications through the development of white OLEDs (WOLEDs). However, to enter the market as a serious competitor, WOLEDs must achieve excellent color quality, high external quantum efficiency (EQE) as well as a long operational lifetime. In this research, novel materials and device architectures were explored to improve the performance of single-stack WOLEDs. A new Pt-based phosphorescent emitter, Pt2O2-p2m, was examined as a single emissive emitter for the development of a stable and efficient single-doped WOLED. A bilayer structure was employed to balance the charges carriers within the emissive layer resulting in low efficiency roll-off at high brightness, realizing a peak EQE of 21.5% and EQEs of 20% at 1000 cd m-2 and 15.3% at 7592 cd m-2. A novel phosphorescent/fluorescent, or hybrid, WOLED device architecture was also proposed. To gather a thorough understanding of blue fluorescent OLEDs prior to its use in a WOLED, a study was conducted to investigate the impact of the material selection on the device performance. The use of an anthracene type host demonstrated an improvement to the operational stability of the blue OLED by reducing the occurrence of degradation events. Additionally, various dopant concentrations and blocking materials revealed vastly different efficiency and lifetime results. Finally, a Pd (II) complex, Pd3O8-Py5, with efficient amber-colored aggregate emission was employed to produce a WOLED. Various host materials were investigated to achieve balanced white emission and the addition of an interlayer composed of a high triplet energy material was used to reduce quenching effects. Through this strategy, a color stable WOLED device with a peak EQE of 45% and an estimated LT95 over 50,000 hours at 1000 cd m-2 was realized. The comprehensive performance of the proposed device architecture competes with WOLED devices that are commercially available and reported within the literature domain, providing a strong foundation to further advance the development of highly efficient and stable single-stack WOLEDs.
ContributorsAmeri, Lydia (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2022
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
Description
The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study

The objective of this meta-analysis is to holistically evaluate the existing body of literature on the anti-neoplastic potential of snake and bee venom. In recent years, venom-based therapeutics have emerged as a promising solution for combating cancer, generating a notable rise in publications on the topic. Consequently, this comprehensive study aims to assess the current state of research and identify trends that may guide future investigations. Following the guidelines established by PRISMA, a total sample of 26 research papers were extracted from the electronic databases, PubMed and Scopus. These papers were categorized based on their publication dates, and research questions were formulated regarding three main topics: venom type, cancer-targeting mechanism, and cancer type. Statistical analysis of the research questions was performed using 2x2 contingency tables for a chi-square test. The results of the analysis reveal a statistically significant increase in publications focused on cell death mechanisms and breast cancer in recent years. This increase in publications reflects a growing interest in the potential for venom to induce apoptosis in cancer cells and target the unique biological properties of breast cancer. Overall, this meta-analysis offers insight into the evolving sphere of venom-based cancer research, providing a glimpse into the potential trajectory of this field.
ContributorsHolder, Marina (Author) / Amdam, Gro (Thesis director) / Mana, Miyeko (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2023-12
Description

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate

Insect pheromones are crucial for survival and reproduction because they influence insect behavior, communication, and interactions within and outside the colony. Honey bees (Apis mellifera) have one of the most complex pheromonal communication systems. One pheromone, known as Queen Mandibular Pheromone (QMP), is released by the queen bee to regulate physiology, behavior, and gene expression in the female worker caste. The pheromone acts as a signal of queen presence that suppresses worker reproduction. In the absence of reproduction, young workers focus on taking care of the queen and larvae, known as nurse tasks, while older workers forage. In nurse bees, QMP has fundamental physiological impacts, including increasing abdominal lipid stores and increasing the protein content of hypopharyngeal glands (HPG). The HPG are worker-specific glands that can synthesize royal jelly used in colony nourishment. In workers, larger HPG signifies the ability to secrete royal jelly, while shrunken glands are characteristic of foragers that do not make jelly. While it is known that QMP increases abdominal lipid stores, the underlying mechanism is unclear: Does the pheromone simply make workers consume more pollen which provides lipids and protein, or does QMP also increase lipogenesis? In this study, I measured abdominal lipogenesis as fatty acid synthase (FAS) activity and monitored abdominal protein content and HPG size in caged, nurse-aged worker bees. In cages, workers were exposed to QMP or not, and they were provided with a lipid less diet in a full factorial design experiment. I found that QMP did not influence abdominal FAS activity or protein, but significantly increased HPG size. The data also revealed a significant positive correlation between abdominal protein and HPG size. My results do not support the idea that QMP modulates lipogenesis in worker bees, but my data can be interpreted to reflect that QMP mobilizes abdominal protein for the production of jelly in the HPG. This finding is in line with a previous study revealing a role of honey bee Brood Pheromone in mobilization of a major protein used in jelly production. Overall, my results support a fundamental role of QMP in worker metabolic processes associated with colony nourishment.

ContributorsOreshkova, Angela (Author) / Amdam, Gro (Thesis director) / Scofield, Sebastian (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / School of Life Sciences (Contributor)
Created2023-05
Description

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential

Sulfate deficiency is seen in children with autism through increased urinary excretion of sulfate and low plasma sulfate levels. Potential factors impacting reduced sulfation include phenosulfotransferase activity, sulfate availability, and the presence of the gut toxin p-cresol. Epsom salt baths, vitamin supplementation, and fecal microbiota transplant therapy are all potential treatments with promising results. Sulfate levels have potential for use as a diagnostic biomarker, allowing for earlier diagnosis and intervention.

ContributorsErickson, Payton (Author) / Adams, James (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
Description

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit.

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit. Finally, this project analyzes the overall usefulness of the summit and each presentation, and suggests areas for improvement.

ContributorsKragenbring, Kylee (Author) / Adams, James (Thesis director) / Matthews, Julie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
161961-Thumbnail Image.png
Description
Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient

Organic materials have emerged as an attractive component of electronics over the past few decades, particularly in the development of efficient and stable organic light-emitting diodes (OLEDs) and organic neuromorphic devices. The electrical, chemical, physical, and optical studies of organic materials and their corresponding devices have been conducted for efficient and stable electronics. The development of efficient and stable deep blue OLED devices remains a challenge that has obstructed the progress of large-scale OLED commercialization. One approach was taken to achieve a deep blue emitter through a color tuning strategy. A new complex, PtNONS56-dtb, was designed and synthesized by controlling the energy gap between T1 and T2 energy states to achieve narrowed and blueshifted emission spectra. This emitter material showed an emission spectrum at 460 nm with a FWHM of 59 nm at room temperature in PMMA, and the PtNONS56-dtb-based device exhibited a peak EQE of 8.5% with CIE coordinates of (0.14, 0.27). A newly developed host and electron blocking materials were demonstrated to achieve efficient and stable OLED devices. The indolocarbazole-based materials were designed to have good hole mobility and high triplet energy. BCN34 as an electron blocking material achieved the estimated LT80 of 12509 h at 1000 cd m-2 with a peak EQE of 30.3% in devices employing Pd3O3 emitter. Additionally, a device with bi-layer emissive layer structure, using BCN34 and CBP as host materials doped with PtN3N emitter, achieved a peak EQE of 16.5% with the LT97 of 351 h at 1000 cd m-2. A new neuromorphic device using Ru(bpy)3(PF6)2 as an active layer was designed to emulate the short-term characteristics of a biological synapse. This memristive device showed a similar operational mechanism with biological synapse through the movement of ions and electronic charges. Furthermore, the performance of the device showed tunability by adding salt. Ultimately, the device with 2% LiClO4 salt shows similar timescales to short-term plasticity characteristics of biological synapses.
ContributorsShin, Samuel (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2021