Matching Items (99)
168292-Thumbnail Image.png
Description
In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance

In this dissertation, two types of passive air freshener products from Henkel, the wick-based air freshener and gel-based air freshener, are studied for their wicking mechanisms and evaporation performances.The fibrous pad of the wick-based air freshener is a porous medium that absorbs fragrance by capillary force and releases the fragrance into the ambient air. To investigate the wicking process, a two-dimensional multiphase flow numerical model using COMSOL Multiphysics is built. Saturation and liquid pressure inside the pad are solved. Comparison between the simulation results and experiments shows that evaporation occurs simultaneously with the wicking process. The evaporation performance on the surface of the wicking pad is analyzed based on the kinetic theory, from which the mass flow rate of molecules passing the interface of each pore of the porous medium is obtained. A 3D model coupling the evaporation model and dynamic wicking on the evaporation pad is built to simulate the entire performance of the air freshener to the environment for a long period of time. Diffusion and natural convection effects are included in the simulation. The simulation results match well with the experiments for both the air fresheners placed in a chamber and in the absent of a chamber, the latter of which is subject to indoor airflow. The gel-based air freshener can be constructed as a porous medium in which the solid network of particles spans the volume of the fragrance liquid. To predict the evaporation performance of the gel, two approaches are tested for gel samples in hemispheric shape. The first approach is the sessile drop model commonly used for the drying process of a pure liquid droplet. It can be used to estimate the weight loss rate and time duration of the evaporation. Another approach is to simulate the concentration profile outside the gel and estimate the evaporation rate from the surface of the gel using the kinetic theory. The evaporation area is updated based on the change of pore size. A 3D simulation using the same analysis is further applied to the cylindrical gel sample. The simulation results match the experimental data well.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
189221-Thumbnail Image.png
Description
The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as

The relationships between the properties of materials and their microstructures have been a central topic in materials science. The microstructure-property mapping and numerical failure prediction are critical for integrated computational material engineering (ICME). However, the bottleneck of ICME is the lack of a clear understanding of the failure mechanism as well as an efficient computational framework. To resolve these issues, research is performed on developing novel physics-based and data-driven numerical methods to reveal the failure mechanism of materials in microstructure-sensitive applications. First, to explore the damage mechanism of microstructure-sensitive materials in general loading cases, a nonlocal lattice particle model (LPM) is adopted because of its intrinsic ability to handle the discontinuity. However, the original form of LPM is unsuitable for simulating nonlinear behavior involving tensor calculation. Therefore, a damage-augmented LPM (DLPM) is proposed by introducing the concept of interchangeability and bond/particle-based damage criteria. The proposed DLPM successfully handles the damage accumulation behavior in general material systems under static and fatigue loading cases. Then, the study is focused on developing an efficient physics-based data-driven computational framework. A data-driven model is proposed to improve the efficiency of a finite element analysis neural network (FEA-Net). The proposed model, i.e., MFEA-Net, aims to learn a more powerful smoother in a multigrid context. The learned smoothers have good generalization properties, and the resulted MFEA-Net has linear computational complexity. The framework has been applied to efficiently predict the thermal and elastic behavior of composites with various microstructural fields. Finally, the fatigue behavior of additively manufactured (AM) Ti64 alloy is analyzed both experimentally and numerically. The fatigue experiments show the fatigue life is related with the contour process parameters, which can result in different pore defects, surface roughness, and grain structures. The fractography and grain structures are closely observed using scanning electron microscope. The sample geometry and defect/crack morphology are characterized through micro computed tomography (CT). After processing the pixel-level CT data, the fatigue crack initiation and growth behavior are numerically simulated using MFEA-Net and DLPM. The experiments and simulation results provided valuable insights in fatigue mechanism of AM Ti64 alloy.
ContributorsMeng, Changyu (Author) / Liu, Yongming (Thesis advisor) / Hoover, Christian (Committee member) / Li, Lin (Committee member) / Peralta, Pedro (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2023
168790-Thumbnail Image.png
Description
Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten has been shown to reduce its transition temperature at the

Vanadium-dioxide-based devices show great switchability in their optical properties due to its dramatic thermochromic phase transition from insulator to metal, but generally have concerns due to its relatively high transition temperature at 68 °C. Doping the vanadium dioxide with tungsten has been shown to reduce its transition temperature at the cost lower optical property differences between its insulating and metallic phases. A recipe is developed through parametric experimentation to fabricate tungsten-doped vanadium dioxide consisting of a novel dual target co-sputtering deposition, a furnace oxidation process, and a post-oxidation annealing process. The transmittance spectra of the resulting films are measured via Fourier-transform infrared spectroscopy at different temperatures to confirm the lowered transition temperature and analyze their thermal-optical hysteresis behavior through the transition temperature range. Afterwards, the optical properties of undoped sputtered vanadium films are modeled and effective medium theory is used to explain the effect of tungsten dopants on the observed transmittance decrease of doped vanadium dioxide. The optical modeling is used to predict the performance of tungsten-doped vanadium dioxide devices, in particular a Fabry-Perot infrared emitter and a nanophotonic infrared transmission filter. Both devices show great promise in their optical properties despite a slight performance decrease from the tungsten doping. These results serve to illustrate the excellent performance of the co-sputtered tungsten-doped vanadium dioxide films.
ContributorsChao, Jeremy (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2022
187840-Thumbnail Image.png
Description
ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge.

ABSTRACTWith the National Aeronautics and Space Administration (NASA) Psyche Mission, humans will soon have the first opportunity to explore a new kind of planetary body: one composed mostly of metal as opposed to stony minerals or ices. Identifying the composition of asteroids from Earth-based observations has been an ongoing challenge. Although optical reflectance spectra, radar, and orbital dynamics can constrain an asteroid’s mineralogy and bulk density, in many cases there is not a clear or precise match with analogous materials such as meteorites. Additionally, the surfaces of asteroids and other small, airless planetary bodies can be heavily modified over geologic time by exposure to the space environment. To accurately interpret remote sensing observations of metal-rich asteroids, it is therefore necessary to understand how the processes active on asteroid surfaces affect metallic materials. This dissertation represents a first step toward that understanding. In collaboration with many colleagues, I have performed laboratory experiments on iron meteorites to simulate solar wind ion irradiation, surface heating, micrometeoroid bombardment, and high-velocity impacts. Characterizing the meteorite surface’s physical and chemical properties before and after each experiment can constrain the effects of each process on a metal-rich surface in space. While additional work will be needed for a complete understanding, it is nevertheless possible to make some early predictions of what (16) Psyche’s surface regolith might look like when humans observe it up close. Moreover, the results of these experiments will inform future exploration beyond asteroid Psyche as humans attempt to understand how Earth’s celestial neighborhood came to be.
ContributorsChristoph, John Morgan M. (Author) / Elkins-Tanton, Linda (Thesis advisor) / Williams, David (Committee member) / Dukes, Catherine (Committee member) / Sharp, Thomas (Committee member) / Bell III, James (Committee member) / Arizona State University (Publisher)
Created2023
157441-Thumbnail Image.png
Description
Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of

Organic electronics have remained a research topic of great interest over the past few decades, with organic light emitting diodes (OLEDs) emerging as a disruptive technology for lighting and display applications. While OLED performance has improved significantly over the past decade, key issues remain unsolved such as the development of stable and efficient blue devices. In order to further the development of OLEDs and increase their commercial potential, innovative device architectures, novel emissive materials and high-energy hosts are designed and reported.

OLEDs employing step-wide graded-doped emissive layers were designed to improve charge balance and center the exciton formation zone leading to improved device performance. A red OLED with a peak efficiency of 16.9% and an estimated LT97 over 2,000 hours at 1,000 cd/m2 was achieved. Employing a similar structure, a sky-blue OLED was demonstrated with a peak efficiency of 17.4% and estimated LT70 over 1,300 hours at 1,000 cd/m2. Furthermore, the sky-blue OLEDs color was improved to CIE coordinates of (0.15, 0.25) while maintaining an efficiency of 16.9% and estimated LT70 over 600 hours by incorporating a fluorescent sensitizer. These devices represent literature records at the time of publication for efficient and stable platinum phosphorescent OLEDs.

A newly developed class of emitters, metal-assisted delayed-fluorescence (MADF), are demonstrated to achieve higher-energy emission from a relatively low triplet energy. A green MADF device reaches a peak efficiency of 22% with an estimated LT95 over 350 hours at 1,000 cd/m2. Additionally, a blue charge confined OLED of PtON1a-tBu demonstrated a peak efficiency above 20%, CIE coordinated of (0.16, 0.27), and emission onset at 425 nm.

High triplet energy hosts are required for the realization of stable and efficient deep blue emission. A rigid “M”-type carbazole/fluorene hybrid called mDCzPF and a carbazole/9-silafluorene hybrid called mDCzPSiF are demonstrated to have high triplet energies ET=2.88 eV and 3.03 eV respectively. Both hosts are demonstrated to have reasonable stability and can serve as a template for future material design. The techniques presented here demonstrate alternative approaches for improving the performance of OLED devices and help to bring this technology closer to widespread commercialization.
ContributorsKlimes, Kody George (Author) / Li, Jian (Thesis advisor) / Adams, James (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
ContributorsAlajmi, Turki (Author) / Phelan, Patrick E (Thesis advisor) / Kaloush, Kamil (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Hajiah, Ali (Committee member) / Arizona State University (Publisher)
Created2019
156655-Thumbnail Image.png
Description
The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is

The objective of this dissertation is to study the use of metamaterials as narrow-band and broadband selective absorbers for opto-thermal and solar thermal energy conversion. Narrow-band selective absorbers have applications such as plasmonic sensing and cancer treatment, while one of the main applications of selective metamaterials with broadband absorption is efficiently converting solar energy into heat as solar absorbers.

This dissertation first discusses the use of gold nanowires as narrow-band selective metamaterial absorbers. An investigation into plasmonic localized heating indicated that film-coupled gold nanoparticles exhibit tunable selective absorption based on the size of the nanoparticles. By using anodized aluminum oxide templates, aluminum nanodisc narrow-band absorbers were fabricated. A metrology instrument to measure the reflectance and transmittance of micro-scale samples was also developed and used to measure the reflectance of the aluminum nanodisc absorbers (220 µm diameter area). Tuning of the resonance wavelengths of these absorbers can be achieved through changing their geometry. Broadband absorption can be achieved by using a combination of geometries for these metamaterials which would facilitate their use as solar absorbers.

Recently, solar energy harvesting has become a topic of considerable research investigation due to it being an environmentally conscious alternative to fossil fuels. The next section discusses the steady-state temperature measurement of a lab-scale multilayer solar absorber, named metafilm. A lab-scale experimental setup is developed to characterize the solar thermal performance of selective solar absorbers. Under a concentration factor of 20.3 suns, a steady-state temperature of ~500 degrees Celsius was achieved for the metafilm compared to 375 degrees Celsius for a commercial black absorber under the same conditions. Thermal durability testing showed that the metafilm could withstand up to 700 degrees Celsius in vacuum conditions and up to 400 degrees Celsius in atmospheric conditions with little degradation of its optical and radiative properties. Moreover, cost analysis of the metafilm found it to cost significantly less ($2.22 per square meter) than commercial solar coatings ($5.41-100 per square meter).

Finally, this dissertation concludes with recommendations for further studies like using these selective metamaterials and metafilms as absorbers and emitters and using the aluminum nanodiscs on glass as selective filters for photovoltaic cells to enhance solar thermophotovoltaic energy conversion.
ContributorsAlshehri, Hassan (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Rykaczewski, Konrad (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2018
156696-Thumbnail Image.png
Description
Just for a moment! Imagine you live in Arizona without air-conditioning systems!

Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global

Just for a moment! Imagine you live in Arizona without air-conditioning systems!

Air-conditioning and refrigeration systems are one of the most crucial systems in anyone’s house and car these days. Energy resources are becoming more scarce and expensive. Most of the currently used refrigerants have brought an international concern about global warming. The search for more efficient cooling/refrigeration systems with environmental friendly refrigerants has become more and more important so as to reduce greenhouse gas emissions and ensure sustainable and affordable energy systems. The most widely used air-conditioning and refrigeration system, based on the vapor compression cycle, is driven by converting electricity into mechanical work which is a high quality type of energy. However, these systems can instead be possibly driven by heat, be made solid-state (i.e., thermoelectric cooling), consist entirely of a gaseous working fluid (i.e., reverse Brayton cycle), etc. This research explores several thermally driven cooling systems in order to understand and further overcome some of the major drawbacks associated with their performance as well as their high capital costs. In the second chapter, we investigate the opportunities for integrating single- and double-stage ammonia-water (NH3–H2O) absorption refrigeration systems with multi-effect distillation (MED) via cascade of rejected heat for large-scale plants. Similarly, in the third chapter, we explore a new polygeneration cooling-power cycle’s performance based on Rankine, reverse Brayton, ejector, and liquid desiccant cycles to produce power, cooling, and possibly fresh water for various configurations. Different configurations are considered from an energy perspective and are compared to stand-alone systems. In the last chapter, a new simple, inexpensive, scalable, environmentally friendly cooling system based on an adsorption heat pump system and evacuated tube solar collector is experimentally and theoretically studied. The system is destined as a small-scale system to harness solar radiation to provide a cooling effect directly in one system.
ContributorsAlelyani, Sami M (Author) / Phelan, Patrick E (Thesis advisor) / Wang, Liping (Committee member) / Stechel, Ellen B (Committee member) / Calhoun, Ronald J (Committee member) / Alalili, Ali R (Committee member) / Arizona State University (Publisher)
Created2018
157558-Thumbnail Image.png
Description
This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and

This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition.
ContributorsRana, Ashish (Author) / Wang, Robert Y (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019
157046-Thumbnail Image.png
Description
Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting

Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion.

In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters.

In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices.
ContributorsFu, Houqiang (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2019