Matching Items (3)
Filtering by

Clear all filters

150134-Thumbnail Image.png
Description
This study is an initial step in exploring how urban design typologies can help inform community asset research to broaden the definition of physical assets. Asset based community development research identifies specific types of physical assets such as streets, structures, housing or vacant lots. This research argues that a comprehensive

This study is an initial step in exploring how urban design typologies can help inform community asset research to broaden the definition of physical assets. Asset based community development research identifies specific types of physical assets such as streets, structures, housing or vacant lots. This research argues that a comprehensive look at physical assets is needed, taking into consideration urban typologies such as paths, landmarks, views and districts as well as the spatial relationships that influence their significance. Community asset literature and conditions specific to the Sunnyslope community in Phoenix, Arizona suggest that differences in ethnicity such as spatial segregation, and socio-economic status exist. However, the literature does not address how these differences in ethnicity might influence residents' perceptions of physical assets. This study explores the questions - How do perceptions of physical assets vary among women of different ethnicities? What, if any, are the reasons behind these ethnic differences in perception? The research applied a survey instrument with open-ended and close-ended questions, and a map to mark frequently used routes. Assets identified by recoding open-ended responses were statistically analyzed for frequencies. The most frequently mentioned assets were analyzed by GIS for spatial relationships. Women of White and Latino ethnicities frequently chose individual buildings and locations as physical assets over paths, views, districts and landmarks. White women identified urban typologies as physical assets. In contrast, Latino women identified no significant urban typologies as assets. The inclusion of urban typologies confirmed and expanded upon physical assets previously identified by other asset-based studies on the community of Sunnyslope. Notable differences in ethnicity were found in the perception of physical assets of economic significance, assets for use and assets of visual appeal. Besides ethnicity, age and proximity to assets also influenced asset perception of White and Latino women. Community organizations need to take into consideration the ethnic differences in perception of physical assets, in the context of culture, spatial segregation and differing family structures. The inclusion of urban typologies helped highlight the differences in ethnicities for physical assets of visual appeal, and the use of leisure and recreation facilities.
ContributorsThatte, Aparna (Author) / Ozel, Filiz (Thesis advisor) / Ahrentzen, Sherry (Thesis advisor) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2011
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019
158350-Thumbnail Image.png
Description
The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year,

The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year, leading to increased ambient air temperature and outdoor/indoor discomfort in Phoenix, Arizona. With the fast growth of the capital city of Arizona, the automobile-dependent planning of the city contributed negatively to the outdoor thermal comfort and to the people's daily social lives. One of the biggest challenges for hot-arid cities is to mitigate against the induced urban heat increase and improve the outdoor thermal. The objective of this study is to propose a pragmatic and useful framework that would improve the outdoor thermal comfort, by being able to evaluate and select minimally invasive urban heat mitigation strategies that could be applied to the existing urban settings in the hot-arid area of Phoenix. The study started with an evaluation of existing microclimate conditions by means of multiple field observations cross a North-South oriented urban block of buildings within Arizona State University’s Downtown campus in Phoenix. The collected data was evaluated and analyzed for a better understanding of the different local climates within the study area, then used to evaluate and partially validate a computational fluid dynamics model, ENVI-Met. Furthermore, three mitigation strategies were analyzed to the Urban Canopy Layer (UCL) level, an increase in the fraction of permeable materials in the ground surface, adding different configurations of high/low Leaf Area Density (LAD) trees, and replacing the trees configurations with fabric shading. All the strategies were compared and analyzed to determine the most impactful and effective mitigation strategies. The evaluated strategies have shown a substantial cooling effect from the High LAD trees scenarios. Also, the fabric shading strategies have shown a higher cooling effect than the Low LAD trees. Integrating the trees scenarios with the fabric shading had close cooling effect results in the High LAD trees scenarios. Finally, how to integrate these successful strategies into practical situations was addressed.
ContributorsAldakheelallah, Abdullah (Author) / Reddy, T Agami (Thesis advisor) / Middel, Ariane (Committee member) / Coseo, Paul (Committee member) / Arizona State University (Publisher)
Created2020