Matching Items (92)
134051-Thumbnail Image.png
Description
Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose

Nicotine addiction remains a prevalent public health issue, and the FDA has released a statement outlining the systematic reduction of nicotine to non-zero levels in the coming years. Current research has not yet established the effects of abrupt nicotine dose reduction on vulnerability to relapse, nor has abrupt nicotine dose reduction been evaluated in terms of behavioral economic characteristics of demand and elasticity been evaluated for reduced doses of nicotine. Using a rat model, we first evaluated the comparability of between- and within-session protocols for establishing characteristics of demand and elasticity for nicotine to shorten experimental timelines for this study and future studies. We then tested environmental enrichment and sex as factors of elasticity of demand for nicotine. Using a rat model of relapse to cues, we also examined the effects of nicotine dose-reduction on vulnerability to relapse. We found differences in maximum consumption and demand between the between- and within-session protocols, as well as sex differences in elasticity of demand on the within-session protocol where male demand was more elastic than female demand. Additionally, we found that enrichment significantly increased elasticity of demand for nicotine for both males and females. Finally, preliminary analyses revealed that nicotine dose reduction yields more inelastic demand and higher maximum consumption, and these outcomes predict increased time to extinction of the association between nicotine and contingent cues, and increased rates of relapse. These studies highlight the usefulness and validity of within-session protocols, and also illustrate the necessity for rigorous testing of forced dose reduction on nicotine vulnerability.
ContributorsCabrera-Brown, Gabriella Paula (Author) / Gipson-Reichardt, Cassandra (Thesis director) / Olive, M. Foster (Committee member) / Davis, Mary (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133839-Thumbnail Image.png
Description
One way pathogen prevalence is maintained is by persistence within reservoir host species. Reservoir hosts are species that do not show any signs of disease when a pathogen infects them. As a result, the pathogen survives and is able to remain in the host population. Batrachochytrium dendrobatidis (Bd) is a

One way pathogen prevalence is maintained is by persistence within reservoir host species. Reservoir hosts are species that do not show any signs of disease when a pathogen infects them. As a result, the pathogen survives and is able to remain in the host population. Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that has caused extensive amphibian declines. It has been suspected that reservoir hosts are a key to Bd remaining in certain amphibian populations. I studied dragonfly naiads (Anisoptera spp.), the aquatic life cycle stage immediately following hatching and preceding the emergence of wings, as potential reservoir hosts for Bd on the Mogollon Rim in Arizona. On the Mogollon Rim winter temperatures fall below the optimal thermal range for Bd. Boreal chorus frogs (Pseudacris maculata), the most common amphibian species on the Rim, maintain subzero body temperatures to survive the winter. Since the optimal thermal range for Bd is between 4°C and 25°C, it is unlikely that Bd can grow on the skin of these frogs during winter. As a result, it is unknown how Bd prevalence is maintained in the area. Recent studies showed that Bd can grow in non-amphibian hosts. I hypothesized that Bd could grow within the digestive tracts of dragonfly naiads, since they stay in the water and don’t maintain subzero body temperatures during the cold winters on the Rim. Non-native and native naiads were both included in this study; the non-native naiads were purchased from a company in California while the native naiads were captured from ponds on the Mogollon Rim. The digestive tracts of the naiads were then dissected, and the DNA was extracted using an animal tissue spin-column protocol. The extracted DNA was analyzed by qPCR. The qPCR analysis of the native and non-native dragonfly naiads revealed that the samples were either Bd-negative or very weakly Bd-positive, with most being the former. Based on these results, it does not appear that naiads are biologically significant reservoir hosts for Bd.
ContributorsAnigwe, Christopher (Author) / Collins, James (Thesis director) / DeNardo, Dale (Committee member) / Brus, Evan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty

This project was designed to develop resources to highlight diverse career options for students achieving a degree within the School of Life Sciences. Many students have a very narrow view of what careers their degree prepares them for. In addition, if they have a career in mind, they have difficulty selecting an appropriate degree that will prepare them for their intended career. The goal of this project was to provide a broader view of career options, as well as illustrate the requirements each student would need to meet in order to pursue these careers. This was done by interviewing five career professionals and developing a major map that corresponds to the specific requirements of that career.
ContributorsBaber, Ariel Kate Elven (Author) / Wilson Sayres, Melissa (Thesis director) / DeNardo, Dale (Committee member) / Downing, Virginia (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133928-Thumbnail Image.png
Description
Water-balance is a critical but understudied consideration for animals reproducing in dry environments, as females invest a significant amount of water into their offspring. What makes water especially challenging, is that few animals are known to have true water storage, whereas energy as fat storage is well-documented. Recent studies have

Water-balance is a critical but understudied consideration for animals reproducing in dry environments, as females invest a significant amount of water into their offspring. What makes water especially challenging, is that few animals are known to have true water storage, whereas energy as fat storage is well-documented. Recent studies have suggested the possibility that, when drinking water is scarce, animals can catabolize their muscles, thereby extracting cellular water. In this study, the aim was to show this as a potential method used by animals reproducing in dry environments to cope with dehydration and still produce a clutch. Children's pythons (Antaresia childreni) were used to investigate this phenomenon due to the fact that they experience two, distinctive, reproductive phases- vitellogenesis (when protein and energy are mobilized and invested into the yolk) and gravidity (when the major water investment into the egg occurs, as well as egg shelling). Other factors that make them excellent candidates are that they are pure capital breeders (don't eat during the reproductive season) and can withstand periods of water deprivation that far outlast their reproductive gravid phase. Reproductive and non-reproductive females were deprived of water for the duration of gravidity, and their mass decrease, epaxial muscle shrinkage, blood osmolality, total protein, uric acid, triglycerides and ketones were measured at the onset of each reproductive stage; these values were compared to their water-provided counterparts. Water-deprived females experienced greater mass loss, epaxial muscle loss, blood plasma osmolality, and uric acid than water-provided females. These findings suggest that muscle catabolism is used as a method of dealing with water-deprivation during gravidity.
ContributorsKaminsky, Brittany Michele (Author) / DeNardo, Dale (Thesis director) / Angilletta, Michael (Committee member) / Brusch, George (Committee member) / School of Life Sciences (Contributor) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources.

This creative thesis project aimed to create career development resources that School of Life Sciences majors could use to enhance their college experience, expand the breadth of relevant career options for School of Life Sciences majors, and confront and divert career problems through the implementation of these career development resources. Students encounter career problems when their intention and action diverge. These career problems may cause a student to stop their pursuit of a given career, change majors, or even stop schooling completely. It is the objective of this project to help resolve these career problems by introducing a career development resource flyer that educates the student about a given career, provides coursework to guide a student towards this career path, familiarize students with extracurricular efforts necessary for this position, propose valuable resources that the student can utilize to learn more about the career, and offer a question and answer portion for further career and professional understanding. In order to create these career development resource flyers a variety of professionals, both with and without relationships with Arizona State University were contacted and interviewed. The answers gathered from these interviews were then utilized to create the career flyers. The project was successful in creating five distinct career development resource flyers, as well as a blank template with instructions to be used in the future by the School of Life Sciences. The career development resource flyers will be utilized by the School of Life Sciences advising staff for future exploratory majors, but is not limited to just these students. Aspirations are set to create an expansive reservoir of these resources for future generations of students to access in hopes that they will be better suited to find a career path that they are passionate about and be better prepared to attain.
ContributorsGallegos, Darius Sloan (Author) / Wilson Sayres, Melissa (Thesis director) / Downing, Virginia (Committee member) / DeNardo, Dale (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134881-Thumbnail Image.png
Description
Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme characteristics in microhabitat utilization and prey-capture methods (highly arboreal, effective

Vertebral osteology varies greatly among snake species. This variation may be related to specialization in microhabitat and prey-capture. Radiographs of eight preserved male specimens were taken in order to analyze the vertebral length and morphology of snakes which exhibit extreme characteristics in microhabitat utilization and prey-capture methods (highly arboreal, effective constrictor). This group includes two representatives each from four major families within Serpentes: Boidae, Pythonidae, Viperidae, and Colubridae. The four boids and pythons are effective constrictors, while the four vipers and colubrids are non-constricting. One specimen of each pair is highly arboreal, while the other is terrestrial. Findings support previous research in that constrictors had larger total numbers of vertebrae than non-constrictors. When average maximum adult length and morphology of axial musculature was taken into consideration, however, flexibility gained by vertebral number alone does not theoretically confer a mechanical advantage during constriction, at least among the specimens examined. All arboreal specimens had tails with a greater number of vertebrae than their con-familial terrestrial counterpart, implicating greater flexibility in the caudal region as an important characteristic for arboreality across taxa. Examination of segments of 10 vertebrae revealed that the greatest vertebral elongation occurred at the midpoint of the thoracic region. Reduction in size and length of tail vertebrae appears to occur independently of thoracic vertebrae. Colubrids, specifically, demonstrated a unique caudal vertebral elongation pattern which could potentially be advantageous for quick locomotion. These results indicate that caudal morphology may be more important in behavioral specialization than previously thought.
ContributorsGuerrero, Anna Clemencia (Author) / Fisher, Rebecca (Thesis director) / DeNardo, Dale (Committee member) / Elliott, Steve (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135351-Thumbnail Image.png
Description
Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal

Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal expression in female animals. We measured carotenoid-based plumage coloration and coccidian (Isospora spp) parasite burden in desert and city populations of house finches to examine urban impacts on male and female health and attractiveness. In earlier work, we showed that male house finches are less colorful and more parasitized in the city, and we again detected that pattern in this study for males. However, though city females are also less colorful than their rural counterparts, we found that rural females were more parasitized. Also, regardless of sex and unlike rural birds, more colorful birds in the city were more heavily infected with coccidia. These results show that urban environments can disrupt signal honesty in female animals and highlight the need for more studies on how cities affect disease and condition-dependent traits in both male and female animals.
ContributorsSykes, Brooke Emma (Author) / McGraw, Kevin (Thesis director) / Sweazea, Karen (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134961-Thumbnail Image.png
Description
There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known

There are two electrophysiological states of sleep in birds (rapid-eye-movement sleep [REM] and slow-wave sleep [SWS]), which have different functions and costs. REM improves memory consolidation, while SWS is neuro-restorative but also exposes the animal to more risk during this deep-sleep phase. Birds who sleep in more exposed microsites are known to invest proportionally less in SWS (presumably to ensure proper vigilance), but otherwise little else is known about the ecological or behavioral predictors of how much time birds devote to REM v. SWS sleep. In this comparative analysis, we examine how proportional time spent in SWS v. REM is related to brain mass and duration of the incubation period in adults. Brain mass and incubation period were chosen as predictors of sleep state investment because brain mass is positively correlated with body size (and may show a relationship between physical development and sleep) and incubation period can be a link used to show similarities and differences between birds and mammals (using mammalian gestation period). We hypothesized that (1) species with larger brains (relative to body size and also while controlling for phylogeny) would have higher demands for information processing, and possibly proportionally outweigh neuro-repair, and thus devote more time to REM and that (2) species with longer incubation periods would have proportionally more REM due to the extended time required for overnight predator vigilance (and not falling into deep sleep) while on the nest. We found, using neurophysiological data from literature on 27 bird species, that adults from species with longer incubation periods spent proportionally more time in REM sleep, but that relative brain size was not significantly associated with relative time spent in REM or SWS. We therefore provide evidence that mammalian and avian REM in response to incubation/gestation period have convergently evolved. Our results suggest that overnight environmental conditions (e.g. sleep site exposure) might have a greater effect on sleep parameters than gross morphological attributes.
ContributorsRaiffe, Joshua Sapell (Author) / McGraw, Kevin (Thesis director) / Deviche, Pierre (Committee member) / Hutton, Pierce (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134054-Thumbnail Image.png
Description
Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned

Cases of heroin use and overdose are on the rise in the United States which has created what some call a public health crisis. Previous studies have investigated the beneficial effect of social interaction recovering addicts, and in animal models of addiction, social interaction can prevent or reverse the conditioned rewarding effects of cocaine. This study sought to determine if social interaction would prevent or diminish a conditioned preference for a heroin-paired context. Following establishment of baseline place preference, adult male Sprague-Dawley rats underwent once daily conditioning with either saline, heroin (1 mg/kg), or the animal's cage-mate for a total of 8 conditioning sessions. Assessment of post-conditioning place preference revealed that both the heroin injections and the presence of the cage-mate produced a place preference . In contrast to the findings of previous studies using cocaine as the conditioning drug, it was determined that rats preferred the heroin-paired context over that paired with the cage-mate.. These findings suggest that the protective effects of social interaction found in prior studies using cocaine as the conditioning drug may not extend to opiates, perhaps a result of stronger contextual conditioning and/or rewarding effects of this class of abused drugs.
ContributorsMarble, Krista Lillian (Author) / Olive, M. Foster (Thesis director) / Tomek, Seven (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05